乘法逆元求解

递推打表求逆元

在这里插入图片描述

void init()
{
    fac[0] = invfac[0] = pow2[0] = fac[1] = invfac[1] = 1;///初始化
    pow2[1] = 2;
    for (int i = 2; i < N; i++)
    {
        fac[i] = fac[i - 1] * i % mod;///阶乘
        invfac[i] = (mod - mod / i) * invfac[mod % i] % mod;///递推打表求逆元O(n),费马小定理是O(n)*log(n)
        pow2[i] = pow2[i - 1] * 2 % mod;///2的次幂
    }
    for (int i = 2; i < N; i++)
        invfac[i] = invfac[i] * invfac[i - 1] % mod;///逆元阶乘
}
费马小定理求逆元

x的逆元是qsm(x,mod-2);

欧拉函数求逆元
扩展欧几里得算法求逆元
int exgcd(int a, int b, int &x, int &y)
{ ///x,y起初不知道,是递归往上求解x,y
    if (b == 0)
    {
        x = 1, y = 0;
        return a;///两处return 
    }
    int d = exgcd(b, a % b, x, y);
    int tmp = x;
    x = y, y = tmp - (a / b) * y;
    return d;///记得要返回d啊
    ///【a*x+b*y=1中,x是a在模b下的逆元,y是b在模a下的逆元】
    ///【若a*x+b*y=c有解,则有gcd(a,b)|c】
}
循环找解求逆元
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WTcrazy _

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值