递推打表求逆元
void init()
{
fac[0] = invfac[0] = pow2[0] = fac[1] = invfac[1] = 1;///初始化
pow2[1] = 2;
for (int i = 2; i < N; i++)
{
fac[i] = fac[i - 1] * i % mod;///阶乘
invfac[i] = (mod - mod / i) * invfac[mod % i] % mod;///递推打表求逆元O(n),费马小定理是O(n)*log(n)
pow2[i] = pow2[i - 1] * 2 % mod;///2的次幂
}
for (int i = 2; i < N; i++)
invfac[i] = invfac[i] * invfac[i - 1] % mod;///逆元阶乘
}
费马小定理求逆元
x的逆元是qsm(x,mod-2);
欧拉函数求逆元
扩展欧几里得算法求逆元
int exgcd(int a, int b, int &x, int &y)
{ ///x,y起初不知道,是递归往上求解x,y
if (b == 0)
{
x = 1, y = 0;
return a;///两处return
}
int d = exgcd(b, a % b, x, y);
int tmp = x;
x = y, y = tmp - (a / b) * y;
return d;///记得要返回d啊
///【a*x+b*y=1中,x是a在模b下的逆元,y是b在模a下的逆元】
///【若a*x+b*y=c有解,则有gcd(a,b)|c】
}