例子
m i n ( 100 + 10 ) x i + 10 x i / 10 + 200 y i + 5 ( 50 + ∑ k = 1 i − 1 x k − a i − x i / 10 ) + 10 ( 13 + ∑ k = 1 i − 1 y k − b i ) min{(100+10)x_i+10x_i/10+200y_i+5(50+\sum_{k=1}^{i-1}x_k-a_i-x_i/10)+10(13+\sum_{k=1}^{i-1}y_k-b_i)} min(100+10)xi+10xi/10+200yi+5(50+k=1∑i−1xk−ai−xi/10)+10(13+k=1∑i−1yk−bi)
分数
3 5 \frac{3}{5} 53
累加
∑ k = 1 i − 1 \sum_{k=1}^{i-1} k=1∑i−1
累乘
∏ n = 1 N 3 x 2 \prod_{n=1}^{N}{3x^2} n=1∏N3x2
开方
100 2 \sqrt[2]{100} 2100
积分
∫ 1 5 f ( x ) d x ∭ 1 5 F [ x ] d x ∭ 1 5 g ( x ) d x \int^5_1{f(x)}{\rm d}x \\ \iiint^5_1{F[x]}dx \\ \iiint^5_1{g(x)}{\rm d}x ∫15f(x)dx∭15F[x]dx∭15g(x)dx【\rm是把斜体变正体】
无穷
± ∞ \pm\infty ±∞
极限
lim n → + ∞ n \lim_{n\rightarrow+\infty}n n→+∞limn
关系运算符
≥ ≤ ⊂ ⊃ ∈ \geq \\ \leq \\ \subset \\ \supset \\ \in ≥≤⊂⊃∈
二元运算符
± ⋅ 【 点 乘 】 × ÷ \pm \\ \cdot【点乘】 \\ \times \\ \div ±⋅【点乘】×÷
否定关系运算符
≠ ≮ ⊅ ⊄ \not= \\ \not< \\ \not\supset \\ \not\subset =<⊃⊂
对数运算符
log log 2 18 ln \log \\ \log_2{18} \\ \ln loglog218ln
三角运算符
⊥ 【 垂 直 】 ∠ 【 角 】 ∘ 【 ° 度 】 sin cos tan sec csc cot \bot【垂直】 \\ \angle【角】 \\ \circ【°度】 \\ \sin \\ \cos \\ \tan \\ \sec \\ \csc \\ \cot \\ ⊥【垂直】∠【角】∘【°度】sincostanseccsccot
箭头
← → ⟶ ↑ ↓ \leftarrow \\ \rightarrow \\ \longrightarrow \\ \uparrow \\ \downarrow ←→⟶↑↓
分段函数
P
r
−
j
=
{
0
r
−
j
<
45
1
r
−
j
>
=
45
P_{r-j}= \begin{cases} 0 & r-j<45 \\ 1 & r-j>=45 \end{cases}
Pr−j={01r−j<45r−j>=45
效果如下