目录
一、动态字符串
我们都知道 Redis 中保存的 Key 是字符串,value 往往是字符串或者字符串的集合。
可见字符串是 Redis 中最常用的一种数据结构。
不过 Redis 没有直接使用 C 语言中的字符串,因为 C 语言字符串存在很多问题:
获取字符串长度的需要通过运算
非二进制安全
不可修改
Redis 构建了一种新的字符串结构,称为简单动态字符串( Simple Dynamic String ),简称 SDS。
例如,我们执行命令:
那么 Redis 将在底层创建两个 SDS,其中一个是包含 “name” 的 SDS,另一个是包含“虎哥”的 SDS。
Redis 是 C 语言实现的,其中 SDS 是一个结构体,源码如下:
例如,一个包含字符串 “name” 的 sds 结构如下:
SDS 之所以叫做动态字符串,是因为它具备动态扩容的能力,例如一个内容为 “hi” 的 SDS:
假如我们要给 SDS 追加一段字符串 “,Amy” ,这里首先会申请新内存空间:
如果新字符串小于 1M,则新空间为扩展后字符串长度的两倍 +1;
如果新字符串大于 1M,则新空间为扩展后字符串长度 +1M+1。称为内存预分配。
二、intset
IntSet 是 Redis 中 set 集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。
结构如下:
其中的 encoding 包含三种模式,表示存储的整数大小不同:
为了方便查找,Redis 会将 intset 中所有的整数按照升序依次保存在 contents 数组中,结构如图:
现在,数组中每个数字都在 int16_t 的范围内,因此采用的编码方式是 INTSET_ENC_INT16,部分占用的字节大
小为:
encoding:4 字节
length:4 字节
contents:2 字节 * 3 = 6 字节
我们向该其中添加一个数字:50000,这个数字超出了 int16_t 的范围,intset 会自动升级编码方式到合适的大
小。
以当前案例来说流程如下:
- 升级编码为 INTSET_ENC_INT32, 每个整数占 4 字节,并按照新的编码方式及元素个数扩容数组
- 倒序依次将数组中的元素拷贝到扩容后的正确位置
- 将待添加的元素放入数组末尾
- 最后,将 inset 的 encoding 属性改为 INTSET_ENC_INT32,将 length 属性改为 4
源码如下:
综合所述
Intset 可以看做是特殊的整数数组,具备一些特点:
- Redis 会确保 Intset 中的元素唯一、有序
- 具备类型升级机制,可以节省内存
- 底层采用二分查找方式来查询
三、Dict
1. 简介
我们知道 Redis 是一个键值型( Key-Value Pair )的数据库,我们可以根据键实现快速的增删改查。
而键与值的映射关系正是通过 Dict 来实现的。
Dict 由三部分组成,分别是:哈希表( DictHashTable )、哈希节点( DictEntry )、字典( Dict )
当我们向 Dict 添加键值对时,Redis 首先根据 key 计算出 hash 值( h ),
然后利用 h & sizemask 来计算元素应该存储到数组中的哪个索引位置。
我们存储 k1=v1,假设 k1 的哈希值 h =1,则 1&3 =1,
因此 k1=v1 要存储到数组角标 1 位置。
Dict 由三部分组成,分别是:哈希表( DictHashTable )、哈希节点( DictEntry )、字典( Dict )
2. Dict的扩容
Dict 中的 HashTable 就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,
链表过长,则查询效率会大大降低。
Dict 在每次新增键值对时都会检查负载因子( LoadFactor = used/size ) ,满足以下两种情况时会触发哈希表
扩容:
哈希表的 LoadFactor >= 1,并且服务器没有执行 BGSAVE 或者 BGREWRITEAOF 等后台进程;
哈希表的 LoadFactor > 5 ;
3. Dict的rehash
不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的 size 和 sizemask 变化,而 key 的查询与
sizemask 有关。
因此必须对哈希表中的每一个 key 重新计算索引,插入新的哈希表,这个过程称为 rehash。
过程是这样的:
- 计算新 hash 表的 realeSize,值取决于当前要做的是扩容还是收缩:
- 如果是扩容,则新 size 为第一个大于等于 dict.ht[0].used + 1 的 2^n
- 如果是收缩,则新 size 为第一个大于等于 dict.ht[0].used 的 2^n (不得小于 4)
- 按照新的 realeSize 申请内存空间,创建 dictht,并赋值给 dict.ht[1]
- 设置 dict.rehashidx = 0,标示开始
- 将 dict.ht[0] 中的每一个 dictEntry 都 rehash 到 dict.ht[1]
- 将 dict.ht[1] 赋值给 dict.ht[0],给 dict.ht[1] 初始化为空哈希表,释放原来的 dict.ht[0] 的内存
- 将 rehashidx 赋值为 -1,代表rehash 结束
- 在 rehash 过程中,新增操作,则直接写入 ht[1],查询、修改和删除则会在 dict.ht[0] 和 dict.ht[1] 依次查
找并执行。
这样可以确保 ht[0] 的数据只减不增,随着 rehash 最终为空
整个过程可以描述成:
4. 知识小结
Dict的结构:
- 类似 java 的 HashTable,底层是数组加链表来解决哈希冲突
- Dict 包含两个哈希表,ht[0] 平常用,ht[1] 用来 rehash
Dict 的伸缩:
- 当 LoadFactor 大于 5 或者 LoadFactor 大于 1 并且没有子进程任务时,Dict 扩
- 当 LoadFactor 小于 0.1 时,Dict
- 扩容大小为第一个大于等于 used + 1 的 2^n
- 收缩大小为第一个大于等于 used 的 2^n
- Dict 采用渐进式 rehash,每次访问 Dict 时执行一次 rehash
- rehash 时 ht[0] 只减不增,新增操作只在 ht[1] 执行,其它操作在两个哈希表
四、ZipList
1. 简介
ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。
可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。
属性 | 类型 | 长度 | 用途 |
zlbytes | uint32_t | 4 字节 | 记录整个压缩列表占用的内存字节数 |
zltail | uint32_t | 4 字节 | 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。 |
zllen | uint16_t | 2 字节 | 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。 |
entry | 列表节点 | 不定 | 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。 |
zlend | uint8_t | 1 字节 | 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。 |
2. ZipListEntry
ZipList 中的 Entry 并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用 16 个字节,浪费内存。
而是采用了下面的结构:
- previous_entry_length:前一节点的长度,占 1 个或 5 个字节。
- 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
- 如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为 0xfe,后四个字节才是真实长度数据
- encoding:编码属性,记录 content 的数据类型(字符串还是整数)以及长度,占用 1 个、2 个或 5 个字节
- contents:负责保存节点的数据,可以是字符串或整数
ZipList 中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。
例如:数值 0x1234,采用小端字节序后实际存储值为:0x3412
3. Encoding编码
ZipListEntry 中的 encoding 编码分为字符串和整数两种:
字符串:如果 encoding 是以 “00”、“01” 或者 “10” 开头,则证明 content 是字符串
编码 | 编码长度 | 字符串大小 |
|00pppppp| | 1 bytes | <= 63 bytes |
|01pppppp|qqqqqqqq| | 2 bytes | <= 16383 bytes |
|10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| | 5 bytes | <= 4294967295 bytes |
例如,我们要保存字符串:“ab” 和 “bc”
ZipListEntry 中的 encoding 编码分为字符串和整数两种:
整数:如果 encoding 是以 “11” 开始,则证明 content 是整数,且 encoding 固定只占用1个字节
编码 | 编码长度 | 整数类型 |
11000000 | 1 | int16_t(2 bytes) |
11010000 | 1 | int32_t(4 bytes) |
11100000 | 1 | int64_t(8 bytes) |
11110000 | 1 | 24位有符整数(3 bytes) |
11111110 | 1 | 8位有符整数(1 bytes) |
1111xxxx | 1 | 直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值 |
五、ZipList的连锁更新问题
ZipList 的每个 Entry 都包含 previous_entry_length 来记录上一个节点的大小,长度是 1 个或 5 个字节:
如果前一节点的长度小于 254 字节,则采用 1 个字节来保存这个长度值
如果前一节点的长度大于等于 254 字节,则采用 5 个字节来保存这个长度值,第一个字节为 0xfe,后四个字节才
是真实长度数据
现在,假设我们有 N 个连续的、长度为 250~253 字节之间的 entry,因此 entry 的 previous_entry_length 属
性用 1 个字节即可表示,
如图所示:
ZipList 这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新( Cascade Update )。
新增、删除都可能导致连锁更新的发生。
综合所述
- 压缩列表的可以看做一种连续内存空间的"双向链表"
- 列表的节点之间不是通过指针连接,而是记录上一节点和本节点长度来寻址,内存占用较
- 如果列表数据过多,导致链表过长,可能影响查询性能
- 增或删较大数据时有可能发生连续更新问题
六、QuickList
问题1:ZipList 虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办?
答:为了缓解这个问题,我们必须限制 ZipList 的长度和 entry 大小。
问题2:但是我们要存储大量数据,超出了 ZipList 最佳的上限该怎么办?
答:我们可以创建多个 ZipList 来分片存储数据。
问题3:数据拆分后比较分散,不方便管理和查找,这多个 ZipList 如何建立联系?
答:Redis 在 3.2 版本引入了新的数据结构 QuickList,它是一个双端链表,只不过链表中的每个节点都是一个
ZipList。
为了避免 QuickList 中的每个 ZipList 中 entry 过多,Redis 提供了一个配置项:list-max-ziplist-size 来限制。
如果值为正,则代表 ZipList 的允许的 entry 个数的最大值
如果值为负,则代表 ZipList 的最大内存大小,分 5 种情况:
- -1:每个 ZipList 的内存占用不能超过 4kb
- -2:每个 ZipList的 内存占用不能超过 8kb
- -3:每个 ZipList 的内存占用不能超过 16kb
- -4:每个 ZipList 的内存占用不能超过 32kb
- -5:每个 ZipList 的内存占用不能超过 64kb
其默认值为 -2:
以下是 QuickList 的和 QuickListNode 的结构源码:
我们接下来用一段流程图来描述当前的这个结构
综合所述
- QuickList 是一个节点为 ZipList 的双端链表
- 节点采用 ZipList,解决了传统链表的内存占用
- 控制了 ZipList 大小,解决连续内存空间申请效率
- 中间节点可以压缩,进一步节省了内存
七、SkipList
SkipList(跳表)首先是链表,但与传统链表相比有几点差异:
元素按照升序排列存储
节点可能包含多个指针,指针跨度不同。
SkipList(跳表)首先是链表,但与传统链表相比有几点差异:
元素按照升序排列存储
节点可能包含多个指针,指针跨度不同。
SkipList(跳表)首先是链表,但与传统链表相比有几点差异:
元素按照升序排列存储
节点可能包含多个指针,指针跨度不同。
综合所述
- 跳跃表是一个双向链表,每个节点都包含 score 和 ele 值
- 节点按照 score 值排序,score 值一样则按照 ele 字典
- 每个节点都可以包含多层指针,层数是 1 到 32 之间的随机
- 不同层指针到下一个节点的跨度不同,层级越高,跨度越大
- 增删改查效率与红黑树基本一致,实现却更简单
八、RedisObject
Redis 中的任意数据类型的键和值都会被封装为一个 RedisObject,也叫做 Redis 对象,源码如下:
1. 什么是 redisObject
从 Redis 的使用者的角度来看,⼀个 Redis 节点包含多个 database(非 cluster 模式下默认是 16 个,cluster 模
式下只能是 1 个),而一个 database 维护了从 key space 到 object space 的映射关系。这个映射关系的 key
是 string 类型,⽽ value 可以是多种数据类型,
比如:string , list , hash、set、sorted set 等。
我们可以看到,key 的类型固定是 string,而 value 可能的类型是多个。
⽽从 Redis 内部实现的⾓度来看,database 内的这个映射关系是用⼀个 dict 来维护的。
dict 的 key 固定用⼀种数据结构来表达就够了,这就是动态字符串 sds。而 value 则比较复杂,为了在同⼀个
dict 内能够存储不同类型的 value,这就需要⼀个通⽤的数据结构,这个通用的数据结构就是 robj,全名是
redisObject。
2. Redis的编码方式
Redis 中会根据存储的数据类型不同,选择不同的编码方式,共包含 11 种不同类型:
编号 | 编码方式 | 说明 |
0 | OBJ_ENCODING_RAW | raw编码动态字符串 |
1 | OBJ_ENCODING_INT | long类型的整数的字符串 |
2 | OBJ_ENCODING_HT | hash表(字典dict) |
3 | OBJ_ENCODING_ZIPMAP | 已废弃 |
4 | OBJ_ENCODING_LINKEDLIST | 双端链表 |
5 | OBJ_ENCODING_ZIPLIST | 压缩列表 |
6 | OBJ_ENCODING_INTSET | 整数集合 |
7 | OBJ_ENCODING_SKIPLIST | 跳表 |
8 | OBJ_ENCODING_EMBSTR | embstr的动态字符串 |
9 | OBJ_ENCODING_QUICKLIST | 快速列表 |
10 | OBJ_ENCODING_STREAM | Stream流 |
3. 五种数据结构
Redis 中会根据存储的数据类型不同,选择不同的编码方式。每种数据类型的使用的编码方式如下:
数据类型 | 编码方式 |
OBJ_STRING | int、embstr、raw |
OBJ_LIST | LinkedList和ZipList(3.2以前)、QuickList(3.2以后) |
OBJ_SET | intset、HT |
OBJ_ZSET | ZipList、HT、SkipList |
OBJ_HASH | ZipList、HT |
九、String
String 是 Redis 中最常见的数据存储类型:
其基本编码方式是 RAW,基于简单动态字符串( SDS )实现,存储上限为 512mb。
如果存储的 SDS 长度小于 44 字节,则会采用 EMBSTR 编码,此时 object head 与 SDS 是一段连续空间。申请
内存时只需要调用一次内存分配函数,效率更高。
底层实现⽅式:动态字符串 sds 或者 long
String 的内部存储结构⼀般是 sds( Simple Dynamic String ,可以动态扩展内存),但是如果⼀个 String 类型
的 value 的值是数字,那么 Redis 内部会把它转成 long 类型来存储,从⽽减少内存的使用。
如果存储的字符串是整数值,并且大小在 LONG_MAX 范围内,则会采用 INT 编码:直接将数据保存在
RedisObject 的 ptr 指针位置(刚好 8 字节),不再需要 SDS 了。
确切地说,String 在 Redis 中是⽤⼀个 robj 来表示的。
用来表示 String 的 robj 可能编码成 3 种内部表⽰:OBJ_ENCODING_RAW,OBJ_ENCODING_EMBSTR,
OBJ_ENCODING_INT。
其中前两种编码使⽤的是 sds 来存储,最后⼀种 OBJ_ENCODING_INT 编码直接把 string 存成了 long 型。
在对 string 进行 incr, decr 等操作的时候,如果它内部是 OBJ_ENCODING_INT 编码,那么可以直接行加减操
作;如果它内部是OBJ_ENCODING_RAW 或 OBJ_ENCODING_EMBSTR 编码,那么 Redis 会先试图把 sds 存储
的字符串转成 long 型,如果能转成功,再进行加减操作。
对⼀个内部表示成 long 型的 string 执行 append , setbit , getrange 这些命令,针对的仍然是 string 的值(即
⼗进制表示的字符串),而不是针对内部表⽰的 long 型进⾏操作。
比如字符串 ”32”,如果按照字符数组来解释,它包含两个字符,它们的 ASCII 码分别是 0x33 和 0x32 。当我
们执行命令 setbit key 70 的时候,相当于把字符 0x33 变成了 0x32,这样字符串的值就变成了 ”22”。
⽽如果将字符串 ”32” 按照内部的 64 位 long 型来解释,那么它是 0x0000000000000020,在这个基础上执
⾏ setbit 位操作,结果就完全不对了。
因此,在这些命令的实现中,会把 long 型先转成字符串再进行相应的操作。
十、List
Redis 的 List 类型可以从首、尾操作列表中的元素:
哪一个数据结构能满足上述特征?
- LinkedList :普通链表,可以从双端访问,内存占用较高,内存碎片较多
- ZipList :压缩列表,可以从双端访问,内存占用低,存储上限低
- QuickList:LinkedList + ZipList,可以从双端访问,内存占用较低,包含多个 ZipList,存储上限高
Redis的List结构类似一个双端链表,可以从首、尾操作列表中的元素:
在 3.2 版本之前,Redis 采用 ZipList 和 LinkedList 来实现 List,当元素数量小于 512 并且元素大小小于 64 字节
时采用 ZipList 编码,超过则采用 LinkedList 编码。
在 3.2 版本之后,Redis 统一采用 QuickList 来实现 List:
十一、Redis数据结构-Set结构
Set 是 Redis 中的单列集合,满足下列特点:
- 不保证有序
- 保证元素
- 求交集、并集、差集
可以看出,Set 对查询元素的效率要求非常高,思考一下,什么样的数据结构可以满足?
HashTable,也就是 Redis 中的 Dict,不过 Dict 是双列集合(可以存键、值对)
Set 是 Redis 中的集合,不一定确保元素有序,可以满足元素唯一、查询效率要求极高。
为了查询效率和唯一性,set 采用 HT 编码( Dict )。Dict 中的 key 用来存储元素,value 统一为 null。
当存储的所有数据都是整数,并且元素数量不超过 set-max-intset-entries 时,Set 会采用 IntSet 编码,以节省
内存
结构如下:
十二、ZSET
ZSet 也就是 SortedSet,其中每一个元素都需要指定一个 score 值和 member 值:
- 可以根据 score 值排序
- member 必须
- 可以根据 member 查询分数
因此,zset 底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。
之前学习的哪种编码结构可以满足?
- SkipList:可以排序,并且可以同时存储 score 和 ele 值( member )
- HT(Dict):可以键值存储,并且可以根据 key 找 value
当元素数量不多时,HT 和 SkipList 的优势不明显,而且更耗内存。
因此 zset 还会采用 ZipList 结构来节省内存,不过需要同时满足两个条件:
- 元素数量小于 zset_max_ziplist_entries,默认值 128
- 每个元素都小于 zset_max_ziplist_value字节,默认值 64
ziplist 本身没有排序功能,而且没有键值对的概念,因此需要有 zset 通过编码实现:
- ZipList 是连续内存,因此 score 和 element 是紧挨在一起的两个 entry, element 在前,score 在后
- score 越小越接近队首,score 越大越接近队尾,按照 score 值升序排列
十三、Hash
Hash 结构与 Redis 中的 Zset 非常类似:
- 都是键值存储
- 都需求根据键获取值
- 键必须唯一
区别如下:
- zset 的键是 member,值是 score;hash 的键和值都是任意值
- zset 要根据 score 排序;hash 则无需排序
底层实现方式:压缩列表 ziplist 或者字典 dict
当 Hash 中数据项比较少的情况下,Hash 底层才⽤压缩列表 ziplist 进⾏存储数据,随着数据的增加,底层的 ziplist 就可能会转成 dict ,
具体配置如下:
- hash-max-ziplist-entries 512
- hash-max-ziplist-value 64
当满足上面两个条件其中之⼀的时候,Redis 就使⽤ dict 字典来实现 hash。
Redis 的 hash 之所以这样设计,是因为当 ziplist 变得很⼤的时候,它有如下几个缺点:
- 每次插⼊或修改引发的 realloc 操作会有更⼤的概率造成内存拷贝,从而降低性能。
- ⼀旦发生内存拷贝,内存拷贝的成本也相应增加,因为要拷贝更⼤的⼀块数据。
- 当 ziplist 数据项过多的时候,在它上⾯查找指定的数据项就会性能变得很低,因为 ziplist 上的查找需要进行
遍历。
总之,ziplist 本来就设计为各个数据项挨在⼀起组成连续的内存空间,这种结构并不擅长做修改操作。
⼀旦数据发⽣改动,就会引发内存 realloc,可能导致内存拷贝。
hash 结构如下:
zset 集合如下:
因此,Hash 底层采用的编码与 Zset 也基本一致,只需要把排序有关的 SkipList 去掉即可:
Hash 结构默认采用 ZipList 编码,用以节省内存。 ZipList 中相邻的两个 entry 分别保存 field 和 value
当数据量较大时,Hash 结构会转为 HT 编码,也就是 Dict,触发条件有两个:
- ZipList 中的元素数量超过了 hash-max-ziplist-entries(默认 512)
- ZipList 中的任意 entry 大小超过了 hash-max-ziplist-value(默认 64 字节)