目录
一、雪崩问题及解决方案
1. 雪崩问题
微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。
如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。
此时,其它不依赖于服务I的业务似乎不受影响。
但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,
于是越来越多的用户请求到来,越来越多的线程会阻塞:
服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,
那么当前服务也就不可用了。
那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:
2. 解决方案
解决雪崩问题的常见方案有四种:超时处理、仓壁模式、断路器、限流
方案一:超时处理
超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
方案二:仓壁模式
仓壁模式:仓壁模式来源于船舱的设计
船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整
个船体都被淹没。
于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
方案三:断路器模式
断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
断路器会统计访问某个服务的请求数量,异常比例:
当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,
形成熔断:
方案四:限流
流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。
3. 总结
雪崩问题:就是微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。
雪崩问题的四种解决方案可以被认为:
- 限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。
- 超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。
二、服务保护技术对比
在SpringCloud当中支持多种服务保护技术:
早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:
Sentinel |
Hystrix |
|
隔离策略 |
信号量隔离 |
线程池隔离/信号量隔离 |
熔断降级策略 |
基于慢调用比例或异常比例 |
基于失败比率 |
实时指标实现 |
滑动窗口 |
滑动窗口(基于 RxJava) |
规则配置 |
支持多种数据源 |
支持多种数据源 |
扩展性 |
多个扩展点 |
插件的形式 |
基于注解的支持 |
支持 |
支持 |
限流 |
基于 QPS,支持基于调用关系的限流 |
有限的支持 |
流量整形 |
支持慢启动、匀速排队模式 |
不支持 |
系统自适应保护 |
支持 |
不支持 |
控制台 |
开箱即用,可配置规则、查看秒级监控、机器发现等 |
不完善 |
常见框架的适配 |
Servlet、Spring Cloud、Dubbo、gRPC 等 |
Servlet、Spring Cloud Netflix |
三、Sentinel介绍与安装
1. 初识Sentinel
Sentinel是阿里巴巴开源的一款微服务流量控制组件。
官网地址:https://sentinelguard.io/zh-cn/index.html
2. Sentinel 优势
- 丰富的应用场景
Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,**例如:**秒杀(即突发流量控制在系统容
量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
- 完备的实时监控
Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下
规模的集群的汇总运行情况。
- 广泛的开源生态
Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如:它与 Spring Cloud、Dubbo、gRPC
的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
- 完善的 SPI 扩展点
Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。**例如:**定
制规则管理、适配动态数据源等。
3. Sentinel 安装
3.1. 下载
sentinel官方提供了UI控制台,方便我们对系统做限流设置,我们可以在GitHub下载。
资料也提供了下载好的jar包:
3.2. 运行
将jar包放到任意非中文目录,执行命令:
java -jar sentinel-dashboard-1.8.1.jar
如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:
配置项 |
默认值 |
说明 |
server.port |
8080 |
服务端口 |
sentinel.dashboard.auth.username |
sentinel |
默认用户名 |
sentinel.dashboard.auth.password |
sentinel |
默认密码 |
例如,修改端口:
java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar
3.3. 访问
访问 http://localhost:8080 页面,就可以看到sentinel的控制台了:
需要输入账号和密码,默认都是:sentinel
登录后,发现一片空白,什么都没有:
这是因为我们还没有与微服务整合。
4. 微服务整合Sentinel
我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:
4.1. 引入sentinel依赖
<!--sentinel-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
4.2. 配置控制台
修改application.yaml文件,添加下面内容:
server:
port: 8088
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080
4.3. 访问order-service的任意端点
打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
四、流量控制
雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。
所以我们先学习这种模式。
1. 簇点链路
当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,
这样的一个调用链就叫做簇点链路。
簇点链路中被监控的每一个接口就是一个资源。
默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),
因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}
2. 设置规则
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
- 流控:流量控制
- 降级:降级熔断
- 热点:热点参数限流,是限流的一种
- 授权:请求的权限控制
3. 快速入门
3.1. 示例
点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。
表单中可以填写限流规则,如下:
其含义是限制/order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
3.2. 练习
需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。
- 首先在sentinel控制台添加限流规则1
- 利用jmeter测试
如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》
资料提供了编写好的Jmeter测试样例:sentinel测试.jmx
打开jmeter,导入课前资料提供的测试样例:
选择:
20个用户,2秒内运行完,QPS是10,超过了5.
选中流控入门,QPS<5右键运行:
注意,不要点击菜单中的执行按钮来运行。
结果:
可以看到,成功的请求每次只有5个
4. 流控模式:三种
在添加限流规则时,点击高级选项,可以选择三种流控模式:
① 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
② 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
③ 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流