AlgorithmDay9

day9

28实现strStr()(只看了思路)

理论基础:

kmp思想:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,用来避免暴力从头循环匹配。

把o(mn)简化为o(m+n)

如何记录已经匹配的内容:next数组

面试官问:next数组里的数字表示的是什么?

为什么这么表示?

答案:next数组是一个前缀表,用来回退,记录了模式串和主串如果不匹配,模式串要从哪里开始重新匹配。

实例:要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。

next数组(前缀表):记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。

前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串。

后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。

aabaaf的前缀是a aa aab aaba aabaa不包含尾字母

aabaaf的后缀是f af aaf baaf abaaf不包含首字母

”最长相等前后缀“

a 0

aa 1

aab 0

aabaa 2

aabaaf 0就是最长相等前后缀,得到了前缀表next数组

所以如果再aabaa的后面那个f开始不匹配了,就找到aabaa的最后一个a那里看他的next表值,得到是2,就从数组的下标为2的b重新开始匹配。

具体实现:

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = -1;
        next[0] = j;
        for(int i = 1; i < s.size(); i++) { // 注意i从1开始
            while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
                j = next[j]; // 向前回退
            }
            if (s[i] == s[j + 1]) { // 找到相同的前后缀
                j++;
            }
            next[i] = j; // 将j(前缀的长度)赋给next[i]
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
		vector<int> next(needle.size());
		getNext(&next[0], needle);
        int j = -1; // // 因为next数组里记录的起始位置为-1
        for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
            while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
                j = next[j]; // j 寻找之前匹配的位置
            }
            if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
                j++; // i的增加在for循环里
            }
            if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};

459重复的子字符串

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = 0;
        int j = 0;
        for(int i = 1;i < s.size(); i++){
            while(j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if(s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != 0 && len % (len - (next[len - 1] )) == 0) {
            return true;
        }
        return false;
    }
};

字符串总结

什么是字符串

那么vector< char > 和 string 又有什么区别呢?

其实在基本操作上没有区别,但是 string提供更多的字符串处理的相关接口,例如string 重载了+,而vector却没有。

所以想处理字符串,我们还是会定义一个string类型。

要不要用库函数

关键部分可以解决就不要用

一般是reverse

双指针法

双指针法可以用来反转字符串,双指针法在数组链表字符串中非常常用

反转系列

反转字符串ii可以 i += (2 * k)解决,可以用reverse

kmp算法

匹配问题

重复子串问题

双指针法大总结

数组篇

所以此时使用双指针法才展现出效率的优势:通过两个指针在一个for循环下完成两个for循环的工作。

字符串篇

链表篇

N数之和篇

(待更新)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatsumotoChrikk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值