设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为nxn−1。)
输入格式:
以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过 1000 的整数)。数字间以空格分隔。
输出格式:
以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是 0,但是表示为 0 0
。
输入样例:
3 4 -5 2 6 1 -2 0
输出样例:
12 3 -10 1 6 0
思路(用python3写的):
读取之后存在一个列表中,先判断长度是否为2,并且判断系数或者指数是否为0,如果是输出0 0,(考虑“零多项式”和"6 0"类似于这类测试数据的情况),然后遍历列表,以0开始到最后一个,长度为2,如果指数为0,便删掉这两个数字,之后就是指数求导
n = [int(x) for x in input().split()]
if len(n) == 2 and (n[0] == 0 or n[1] == 0):
print(0, 0)
else:
for i in range(0, len(n), 2):
if n[i + 1] == 0:
n.remove(n[i]) #删掉指数为零的两个数字
n.remove(n[i]) #不能为i+1,这里必须都为i否则会出现数组越界的情况
continue
n[i] *= n[i + 1]
n[i + 1] -= 1
for i in range(len(n) - 1):
print(n[i], end=" ")
print(n[len(n) - 1])
部分测试数据:
输入:0 0
输出:0 0
输入:6 0
输出:0 0
提交情况:
这个我只在PAT中测试正确过,不保证其他的老师或者学校的测试中能正确,有什么不足的地方希望大家指出共同探讨,谢谢