差分数组引入
作用:求3-6的和:preSum[6]-preSum[3]
差分数组的题目可以放一个
线段数组
@题目描述
动态求连续区间和
给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b][a,b] 的连续和。
输入格式
第一行包含两个整数n 和 m,分别表示数的个数和操作次数。
第二行包含 n 个整数,表示完整数列。
接下来 m 行,每行包含三个整数 k,k,a,b (k=0,表示求子数列[a,b]的和;k=1,表示第 a 个数加 b)。
数列从 11 开始计数。
输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。
数据范围
1≤n≤100000
1≤m≤100000,
1≤a≤b≤n
输入样式:
10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8
输出样式:
11
30
35
1. lowbit函数 所管辖大小
目的:得到最低位0,从而确定管辖范围有多大
直接前驱:c[i-lowbit(i)] 左侧紧挨子树的根 放在quary
直接后继:c[i+lowbit(i)] c[i]的父祖先 放在add
末尾k个0 则管理2^k个元素
c[i]长度:lowbit(i)=(-i)&i
def lowbit(x):
return x&(-x) #返回数为十进制,长度
2. add函数 点更新 后继
点更新:更新所有后继(祖先)
这是一个部分差分数组
def add(x,val): #x,val 位置、大小
while x<=n:
tr[x]+=val #此处的tr[]是一个初始化好的差分数组
x+=lowbit(x)
3.1 前缀和 sumint 前驱
def sumint(x): #查询数组和
res=0
while x>0:
res+=tr[x]
x-=lowbit(x)
return res
3.2 区域和 sum
def sum(x,y):
return query(y)-query(x-1)
总函数
n,m=map(int,input().split())
a=list(map(int,input().split()))
tr=[0 for i in range(0,n+1)]#非纯粹差分数组和
def lowbit(x): #
return x&(-x)
def add(x,val): #x,val 位置、大小
while x<=n:
tr[x]+=val
x+=lowbit(x)
def sumint(x): #查询数组和
res=0
while x>0:
res+=tr[x]
x-=lowbit(x)
return res
def sum(x,y): #前缀和
return sumint(y)-sumint(x-1)
#将a[i]以差分形式加到tr中
for i in range(0,n):
add(i+1,a[i])
for t in range(0,m):
k,l,r=map(int,input().split())
if k==0: #求[a,b]的和
print(sum(l,r)) #查询区间和:i到j
else: #第a个数 加 b
add(l,r)