线段树aa

差分数组引入

在这里插入图片描述
作用:求3-6的和:preSum[6]-preSum[3]

差分数组的题目可以放一个

线段数组

@题目描述

动态求连续区间和
给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b][a,b] 的连续和。
输入格式
第一行包含两个整数n 和 m,分别表示数的个数和操作次数。
第二行包含 n 个整数,表示完整数列。
接下来 m 行,每行包含三个整数 k,k,a,b (k=0,表示求子数列[a,b]的和;k=1,表示第 a 个数加 b)。

数列从 11 开始计数。

输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。

数据范围
1≤n≤100000
1≤m≤100000,
1≤a≤b≤n
输入样式:

10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8

输出样式:

11
30
35

1. lowbit函数 所管辖大小

目的:得到最低位0,从而确定管辖范围有多大
直接前驱:c[i-lowbit(i)] 左侧紧挨子树的根 放在quary
直接后继:c[i+lowbit(i)] c[i]的父祖先 放在add

末尾k个0 则管理2^k个元素
c[i]长度:lowbit(i)=(-i)&i

def lowbit(x):      
    return x&(-x)    #返回数为十进制,长度

2. add函数 点更新 后继

点更新:更新所有后继(祖先)

这是一个部分差分数组

def add(x,val):     #x,val 位置、大小
    while x<=n:
        tr[x]+=val  #此处的tr[]是一个初始化好的差分数组
        x+=lowbit(x)

3.1 前缀和 sumint 前驱

在这里插入图片描述

def sumint(x):       #查询数组和
    res=0
    while x>0:
        res+=tr[x]
        x-=lowbit(x)
    return res

3.2 区域和 sum

def sum(x,y):
    return query(y)-query(x-1)

总函数

n,m=map(int,input().split())
a=list(map(int,input().split()))
tr=[0 for i in range(0,n+1)]#非纯粹差分数组和
def lowbit(x):      #
    return x&(-x)
def add(x,val):     #x,val 位置、大小
    while x<=n:
        tr[x]+=val
        x+=lowbit(x)
def sumint(x):       #查询数组和
    res=0
    while x>0:
        res+=tr[x]
        x-=lowbit(x)
    return res
def sum(x,y):       #前缀和
    return sumint(y)-sumint(x-1)
#将a[i]以差分形式加到tr中
for i in range(0,n):
    add(i+1,a[i])
for t in range(0,m):
    k,l,r=map(int,input().split())
    if k==0:					   #求[a,b]的和
        print(sum(l,r)) #查询区间和:i到j
    else: 						   #第a个数 加 b
        add(l,r)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值