问题描述
给你一个 二叉搜索树 的根节点 root
,和一个由正整数组成、长度为 n
的数组 queries
。
请你找出一个长度为 n
的 二维 答案数组 answer
,其中 answer[i] = [mini, maxi]
:
mini
是树中小于等于queries[i]
的 最大值 。如果不存在这样的值,则使用-1
代替。maxi
是树中大于等于queries[i]
的 最小值 。如果不存在这样的值,则使用-1
代替。
返回数组 answer
。
示例 1 :
输入:root = [6,2,13,1,4,9,15,null,null,null,null,null,null,14], queries = [2,5,16] 输出:[[2,2],[4,6],[15,-1]] 解释:按下面的描述找出并返回查询的答案: - 树中小于等于 2 的最大值是 2 ,且大于等于 2 的最小值也是 2 。所以第一个查询的答案是 [2,2] 。 - 树中小于等于 5 的最大值是 4 ,且大于等于 5 的最小值是 6 。所以第二个查询的答案是 [4,6] 。 - 树中小于等于 16 的最大值是 15 ,且大于等于 16 的最小值不存在。所以第三个查询的答案是 [15,-1] 。
示例 2 :
输入:root = [4,null,9], queries = [3] 输出:[[-1,4]] 解释:树中不存在小于等于 3 的最大值,且大于等于 3 的最小值是 4 。所以查询的答案是 [-1,4]
解答思路
首先先观察本题,本题需要我们找到给出数组中的数在树中的前后数,数也可以是其本身,如果树中有的话,所以这其实就是一个搜索的问题,我们需要找到这个数,如果树中有这个数那我们就可以直接得到两个值,而如果不可以那么就搜索返回和这个数相差最小的数的位置。于是就转变成一个二分搜索的题目,因为二分需要我们得到有序的序列,而这个数又正好是一个二叉搜索树也就是二叉排序树,所以我们首先中序遍历一下这个树,得到有序数列之后,对给出的数组进行遍历查找,然后加入List进行返回即可。
代码如下
class Solution {
public List<List<Integer>> closestNodes(TreeNode root, List<Integer> queries) {
List<Integer> list=new ArrayList<>();
List<List<Integer>> lists=new ArrayList<>();
dfs(root,list);
int n=list.size();
int[] nums=new int[n];
for(int i=0;i<n;i++)//经过测试直接访问数组这样更快
nums[i]=list.get(i);
for(int i:queries){
List<Integer> l=new ArrayList<>();
int j=search(nums,i);
if(j<0){//如果搜索到<0,说明没有比这个更小的数据
l.add(-1);
l.add(nums[0]);
}
else if(j>=n){//如果搜索到>n-1,说明没有比这个更大的数据
l.add(nums[n-1]);
l.add(-1);
}
else{
if(nums[j]==i){
l.add(i);
l.add(i);
}
else if(nums[j]>i){//进行分类
if(j==0)
l.add(-1);
else
l.add(nums[j-1]);
l.add(nums[j]);
}
else {
l.add(nums[j]);
if(j==n-1)
l.add(-1);
else
l.add(nums[j+1]);
}
}
lists.add(l);
}
return lists;
}
public int search(int[] nums,int k){
int l=0,r=nums.length-1;
while(l<=r){
int m=(l+r)/2;
if(nums[m]==k)
return m;
else if(nums[m]>k)
r=m-1;
else
l=m+1;
}
return l;
}
public void dfs(TreeNode p,List<Integer> list){
if(p!=null){
dfs(p.left,list);
list.add(p.val);
dfs(p.right,list);
}
}
}