【逆元,快速幂】子段乘积

在这里插入图片描述

1 1 1 k k k n n n 2 ∗ 1 0 5 2 * 10^5 2105
0 ≤ a i ai ai < 998244353 998244353 998244353

前缀积,统计0的个数

#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
using namespace std;
#define ll long long
#define PII piarll power(ll a,ll b)
const int mod=998244353;
int sum[200010],a[200010],l[200010];
bool vis[200010];
ll qpow(ll a,ll b)
{
	ll ans=1;
	while(b)
	{
		if(b&1)
			ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
signed main()
{
	int n,k; cin>>n>>k;
	sum[0]=1;
	int cnt=0;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		if(a[i]==0){
			sum[i]=1;
			cnt++;
		}
		else sum[i]=(sum[i-1]*a[i])%mod;
		l[i]=cnt;
	}
	int Max=0;
	l[0]=0;
	for(int i=k;i<=n;i++){
		ll ans=sum[i]*qpow(sum[i-k],mod-2)%mod;
		if(l[i]==l[i-k]&&ans>Max) Max=ans;
		cout<<Max<<endl;
	}
} 

逆元

(a/b)%mod=a ∗ * c%mod
即a除b取模等于a乘b的逆元取模

费马小定理:模为质数
b的逆元:b^(mod-2)%mod

扩展欧几里得:模为质数

ll exgcd(ll a,ll b,ll &x,ll &y){
	if(!b){
		x = 1;
		y=0;
		return a;
	}
	ll d = exgcd(b,a%b,y,x);
	y -= a/b*x;
	return d;
}
ll inv(ll a,ll mod){
	ll x,y;
	ll d =exgcd(a,mod,x,y);
	if(d == 1){
		return (x%mod+mod)%mod;
	}
	return -1;
}
signed main(){
	ll ans = inv(b,mod); // 此时的b就是 a/b 中的 b
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值