数学
_WAWA鱼_
郑州大学退役ACMer,目前在小米做浏览器内核(WebKit)开发,曾在科大讯飞实习做大模型SDK,努力成长中,欢迎大家一起学习和交流~
展开
-
[AHOI2005]SHUFFLE 洗牌---公式推导+扩展欧几里得
题目链接#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>#include<map>using namespace std;#define int long longint Mod(int x,int mod){return (x%mod+mod)%mod;}int qmi(int a,int b原创 2022-04-02 10:59:03 · 431 阅读 · 0 评论 -
月月给华华出题---欧拉函数+分块+公式推导
#include<cstdio>#include<iostream>#include<algorithm>using namespace std;typedef long long ll;const int N = 1e6 + 10;const int mod = 1e9 + 7;ll cnt,f[N],phi[N],prime[N];bool vis[N];void init(const int n = 1e6){ phi[1] = 1; f..原创 2022-03-24 23:13:14 · 406 阅读 · 0 评论 -
华华给月月出题---线性筛优化
#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>using namespace std;#define int long longconst int N = 15000000,mod = 1e9+7;int qmi(int a,int b){int res=1;while(b){if(b&1)res=re原创 2022-03-24 20:20:48 · 250 阅读 · 0 评论 -
数学题---与n互质数字之和
给出一个n,求1…n中与n互质的数的和公式为res=n∗phi(n)/2res = n*phi(n)/2res=n∗phi(n)/2phi为欧拉函数#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>using namespace std;#define int long longconst int mod =原创 2022-03-24 18:46:10 · 626 阅读 · 0 评论 -
E. Singers‘ Tour---推导数学
题目链接#include <iostream>#include <cstring>#include <algorithm>using namespace std;const string YES = "YES\n",NO = "NO\n";#define int long long const int N = 40010,mod = 1e9+7;int a[N],b[N];void solve(){ int n;cin>>n; int原创 2022-03-01 12:41:07 · 193 阅读 · 0 评论 -
[AHOI2009]CHESS 中国象棋---组合数优化状压DP
题目链接摘自:Dream_Maker_yangkai链接#include <iostream>#include <cstring>#include <algorithm>#include <vector>using namespace std;#define int long longconst int N = 110,mod = 9999973;int f[N][N][N];int C[N][N];int n,m;signed原创 2022-02-13 09:33:49 · 306 阅读 · 0 评论 -
牛妹的数学难题---组合数
#include <iostream>#include <cstring>#include <algorithm>#include <vector>using namespace std;typedef pair<int,int>PII;#define int long longconst int N =10000010,mod=998244353;int n,k;int fact[N],infact[N],p2[N];in..原创 2022-02-12 22:12:10 · 380 阅读 · 0 评论 -
[SDOI2008]沙拉公主的困惑----公式推导+快速幂+逆元+欧拉函数
题目链接所以对于任何一个正整数x和y,想求小于等于x里和y互质的个数,就用x乘y的欧拉函数再除y就行了吧因为y真正有效的是它的所有质因子,容斥再二项式推一下就是欧拉函数里分数连乘的那一坨#include <iostream>#include <cstring>#include <algorithm>using namespace std;#define int long longconst int N = 1e7+5;int mod;int qmi原创 2022-01-18 11:18:18 · 358 阅读 · 0 评论 -
神奇盘子----数学/(三分不会)
题目链接#include <iostream>#include <cstring>#include <algorithm>#include <cmath>using namespace std;const double PI = 3.141592653589;double dis(double x1,double y1,double x2,double y2){ return sqrt((x2-x1)*(x2-x1)+(y2-y1原创 2022-01-05 15:00:49 · 164 阅读 · 0 评论 -
选择颜色----数学推导
选择颜色----数学推导题目链接公式推导:#include<iostream>#include<cstring>#include<algorithm>using namespace std;#define int unsigned long longconst int mod = 10007;int qmi(int a,int b){ int res=1; while(b) { if(b&1)res=原创 2022-01-03 15:56:16 · 158 阅读 · 0 评论 -
立方数----欧拉筛+质因数分解+二分+公式推理
题看起来比较简单,但其实还是比较难的题目链接详细证明传送门#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>using namespace std;#define int long longconst int N = 1e5+5;int prime[N],pcnt=0;bool st[N];void原创 2021-12-24 16:21:48 · 197 阅读 · 0 评论 -
H、Diff-prime Pairs----简单数论欧拉筛+前缀和+划分思维
题目链接主要思想:先把素数筛出来,然后前缀和统计前i个数里有多少素数,然后每次除以最大公约数。素数对中的素数是不能相同的,其次我们枚举每一个公约数,因为素数对的倍数也是符合题目要求,res += sum[n / g] * (sum[n / g] - 1)#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>using原创 2021-12-24 15:08:08 · 634 阅读 · 0 评论 -
漂亮数----简单数论之欧拉筛+前缀和
简单数题目链接#include<iostream>#include<cstring>#include<algorithm>#include<cmath>#include<vector>using namespace std;//#define int long longconst int N = 1e8+5;int primes[N],idx=0;bool st[N];int vis[N]={0};int cnt[N]={原创 2021-12-23 22:44:48 · 540 阅读 · 0 评论 -
补一补ZZU曾经的招新赛
E. Kirito and Asuna描述kirito为了纪念和Asuna认识的第100天,决定约Asuna出去玩,约会当然要买花了,Kirito不知道Asuna喜欢什么花,但是他知道Asuna有一个爱好,如果两种花的价格是互质的,那么Asuna就会喜欢这些花;如果超过两种的话,那么任意两种花的价格都要互质(若a和b的最大公因数是1,我们认为a和b互质)。Krito当然想买更多种花送给Asuna了,也想让Asuna喜欢他买的这些花,那么他最多能送给Asuna多少种花呢。输入第一行为一个数字n,1&l原创 2021-10-16 14:28:06 · 151 阅读 · 0 评论 -
超全斐波那契问题,快速幂,矩阵快速幂题集
阿原创 2021-10-15 16:48:02 · 172 阅读 · 3 评论