第一题题目是:
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
在pyton中可以直接用index()来返回元素的下标,哈哈感觉有点小作弊。当然还是用算法来实现吧
def merge_find(nums, target):
left = 0
right = len(nums) - 1
while left <= right:
mid = (right - left) // 2 + left
if nums[mid] == target:
return mid
elif nums[mid] > target:
right = mid -1
else:
left = mid +1
return -1
感觉思路看着还是很清晰的。定义左边界left和右边界right,之后循环对比中间下标与目标下标的大小,如果中间下标小于目标下标,则代表目标元素在右边,反之在左边。然后重新定义中间下标,以此类推...直到left大于right越界则表示列表中没有目标值,返回-1
第二题题目是:
在一个严格递减的数组中,找到第二个比目标值target
大的数的下标。若不存在,则返回-1
这个跟上一题差不多,一开始我想的是把找出大于target的下标放在一个新的列表里,然后排序取列表第二个,之后突然发现造出了target就直接将它的索引-2再判断-2之后的索引存不存在就好了。这里跟上一题不同的是数组是递减的,所以判断之后left和right要交换一下。
def merge_find(nums, target):
left = 0
right = len(nums) - 1
while left <= right:
mid = (right - left) // 2 + left
if nums[mid] == target:
if mid - 2 >= 0:
return mid - 2
else:
return -1
elif nums[mid] > target:
left = mid + 1
else:
right = mid - 1
return -1
第三题题目:
给定一个已按照 非递减顺序排列 的整数数组 numbers ,请你从数组中找出两个数满足相加之和等于目标数 target 。
函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
def TowSum(numbers, target):
for a in numbers:
k = numbers.index(a) + 1
for b in numbers[k:]:
if a + b == target:
return sorted([numbers.index(a)+1, numbers.index(b)+1])
return -1
这里我直接双层遍历整个列表,第一层是从头开始,第二层从第一层的元素的后一个开始,因为不可以使用相同的元素。还有=一个要注意的点是这个numbers下标从1开始,所以最后再把得出来的下标加1就ok。