实验七、数据挖掘之K-means聚类算法 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-means算法又称为k-均值算法。k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标
实验六、数据挖掘之关联分析 实验六、数据挖掘之关联分析一、实验目的1. 理解Apriori算法的基本原理2. 理解FP增长算法的基本原理3. 学会用python实现Apriori算法4. 学会用python实现FP增长算法二、实验工具1. Anaconda2. sklearn3. Pandas三、实验简介Apriori算法在发现关联规则领域具有很大影响力。算法命名源于算法使用了频繁项集性质的先验(prior)知识。在具体实验时,Apriori算法将发现关联规则的过程分为两个步骤:第一步通过迭代,检索出事务数据库中
数据挖掘初探 数据挖掘初识1.1 什么是数据挖掘数据挖掘是在大型数据存储辟中,自动地发现有用信息的过程。数据挖掘技术用来探査大型 数据库,发现先前未知的有用模式。数据挖掘还可以预测未来观测结果,例如,预测一位新的顾 客是否会在一家百货公司消费100美元以上。并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统査找个别的记录, 或通过因特网的搜索引擎査找特定的Web页面,则是信息检索(information retrieval)领域的任 务。虽然这些任务非常重要,可能涉及使用复杂的算法和数据结构,但是它们