力扣-198打家劫舍(dp)

该文介绍了力扣198题——打家劫舍,这是一个关于动态规划的问题。小偷不能连续盗窃相邻的房屋,目标是找到在不触发警报的情况下能盗取的最高金额。文章提供了分析、代码实现及解题思路,代码中使用Java实现了一个解决方案,通过动态规划计算每个房屋的最大可盗窃金额,并返回最后的结果。
摘要由CSDN通过智能技术生成

力扣-198打家劫舍

1、题目

198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

2、分析

  1. 题目。看到这个题目首先想到的是不能相邻那么如果要偷其中i的一家,那么我们就需要考虑前面一家i-1就不能偷,i-2的一家就能够偷了,所以,我们大概能够知道这是一道动态规划问题。
  2. 根据上面的分析,dp[i]就是我们偷当前i家的时候,最大金额数。那么我们可得地推公式为:dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i])。
  3. 初始化。根据地推公式,很明显就是需要dp前面两个数,所以dp[0]和dp[1]是我们需要的。
  4. 遍历。从第2个开始往后推即可。

3、代码及注释

class Solution {
    public int rob(int[] nums) {
        // 1. dp[i]表示到第i个房间能够偷窃的最高金额
        if (nums.length == 0) return 0;
        if (nums.length == 1) return nums[0];
        int[] dp = new int[nums.length + 1];
        // 2. 因为递推公式需要dp前两个数,需初始化
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);


        for (int i = 2; i < nums.length; i++){
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
        }

        return dp[nums.length - 1];
    }
}

4、练习

力扣题目链接198. 打家劫舍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值