力扣 232.用栈实现队列

文章目录

题目介绍

在这里插入图片描述

题解

思路:使用两个栈,将一个栈当作输入栈,用于压入 push 传入的数据;另一个栈当作输出栈,用于 pop 和 peek 操作。

每次 pop 或 peek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。

代码如下:

class MyQueue {
    Deque<Integer> inStack;
    Deque<Integer> outStack;

    public MyQueue() {
        inStack = new ArrayDeque<Integer>();
        outStack = new ArrayDeque<Integer>();
    }

    public void push(int x) {
        inStack.push(x);
    }

    public int pop() {
        if (outStack.isEmpty()) {
            in2out();
        }
        return outStack.pop();
    }

    public int peek() {
        if (outStack.isEmpty()) {
            in2out();
        }
        return outStack.peek();
    }

    public boolean empty() {
        return inStack.isEmpty() && outStack.isEmpty();
    }

    // 自己定义的方法:将输入栈的全部数据弹出并压入输出栈(2=to)
    private void in2out() {
        while (!inStack.isEmpty()) {
            outStack.push(inStack.pop());
        }
    }
}

<think>好的,我现在需要帮助用户找到LeetCode第111题的C语言解决方案。首先,我得确认题目内容。LeetCode 111题是“二叉树的最小深度”,要求找出从根节点到最近叶子节点的最短路径上的节点数量。 用户明确要求用C语言实现,所以我需要回忆或查找相关的解决方案。根据之前的引用,解决方案通常包括递归、迭代和使用Morris遍历。不过Morris遍历在C语言中可能比较复杂,而递归和迭代方法更常见。 首先考虑递归方法。二叉树的最小深度不是简单的取左右子树深度的较小值,因为如果某子树为空,就不能取它,否则会得到错误的结果。例如,当左子树为空时,最小深度应取决于右子树。因此,递归的终止条件需要处理节点为空的情况,以及左右子树是否存在的情况。 接下来是迭代方法,通常使用层序遍历(BFS),这样可以逐层检查,一旦遇到叶子节点就返回当前深度,这样效率更高,因为不需要遍历整个树。这在C语言中可以通过队列实现,但需要手动实现队列结构,因为C没有内置的数据结构。 另外,用户提供的引用中提到递归和迭代的时间复杂度都是O(n),空间复杂度递归为O(n)(调用),而迭代的队列也是O(n)。Morris遍历可以达到O(1)的空间,但实现起来较为复杂,可能在面试中不太常见,但用户可能希望了解所有方法。 现在需要编写C语言的代码。首先处理递归方法。结构体TreeNode的定义是必要的。递归函数需要考虑左右子树是否存在的情况。如果左子树不存在,就递归右子树;反之亦然。如果都存在,取较小值。 然后是迭代方法,使用队列进行层序遍历。每次处理一层节点,遇到第一个叶子节点就返回当前深度。C语言中需要自己实现队列,可能用数组或链表。需要注意内存分配和释放,避免泄漏。 还需要注意测试用例,例如树为空的情况,或者只有左子树或右子树的情况。确保代码在这些情况下都能正确运行。 现在,整理思路,写出递归和迭代的C代码。同时,根据用户要求,生成相关问题,帮助用户进一步理解题目和相关知识点。</think>### LeetCode 111 二叉树的最小深度(C语言实现) #### 题目描述 给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量[^1]。 --- #### 方法1:递归解法 **核心思路** 递归遍历左右子树,注意处理单边子树为空的情况(例如左子树为空时,最小深度由右子树决定)。 ```c #include <stdlib.h> #include <math.h> struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; int minDepth(struct TreeNode* root) { if (root == NULL) return 0; if (root->left == NULL) return 1 + minDepth(root->right); // 左子树为空 if (root->right == NULL) return 1 + minDepth(root->left); // 右子树为空 return 1 + fmin(minDepth(root->left), minDepth(root->right)); // 左右子树均非空 } ``` **复杂度分析** - 时间复杂度:$O(n)$,每个节点遍历一次 - 空间复杂度:$O(h)$,递归深度与树高$h$相关[^1] --- #### 方法2:迭代解法(层序遍历) **核心思路** 使用队列实现BFS,首次遇到叶子节点时立即返回当前层数。 ```c #include <stdlib.h> struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; typedef struct QueueNode { struct TreeNode* tree_node; int depth; struct QueueNode* next; } QueueNode; int minDepth(struct TreeNode* root) { if (root == NULL) return 0; QueueNode* queue = (QueueNode*)malloc(sizeof(QueueNode)); queue->tree_node = root; queue->depth = 1; queue->next = NULL; QueueNode* front = queue; QueueNode* rear = queue; while (front != NULL) { struct TreeNode* current = front->tree_node; int current_depth = front->depth; if (current->left == NULL && current->right == NULL) { free(queue); return current_depth; // 找到第一个叶子节点 } if (current->left != NULL) { rear->next = (QueueNode*)malloc(sizeof(QueueNode)); rear = rear->next; rear->tree_node = current->left; rear->depth = current_depth + 1; rear->next = NULL; } if (current->right != NULL) { rear->next = (QueueNode*)malloc(sizeof(QueueNode)); rear = rear->next; rear->tree_node = current->right; rear->depth = current_depth + 1; rear->next = NULL; } QueueNode* temp = front; front = front->next; free(temp); } return 0; // 不会执行到此 } ``` **复杂度分析** - 时间复杂度:$O(n)$,每个节点入队一次 - 空间复杂度:$O(n)$,队列存储节点数量[^1] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值