题160.洛谷P1387 前缀和与差分-最大正方形


题160.洛谷P1387 前缀和与差分-最大正方形


一、题目

在这里插入图片描述

二、题解

题目要你在0,1矩阵中找到最大的由1组成的正方形,输出它的边长。我们要解决两个问题,第一个是只由1组成的正方形如何在里头确定,第二个是最大边长我们怎么求出来。对一,我们可以求出正方形的面积,显然若正方形都是由1组成,那么面积一定等于边长的平方,而求面积在这里我们可以用二维前缀和来得到(区间求和,时间为O(1))。对二,我们要从1开始一直到min(n,m)去试可行的边长,以求出最大,为了使找寻的效率更高,我们不妨使用二分法来去查找(由于每次试边都是试mid,若mid可行,那么我们应该向后继续找是否有更大的边满足,所以我们应该在mid可行之后做将l置为mid的操作,即将区间变为后半段,反之则将区间变成前半段,表示mid太大了,再往小的找找吧,毕竟你要知道一点,在z合格都是1组成的正方形,如果你连小的边都没法满足,那大的又怎么可能有满足的呢)。

#include <bits/stdc++.h>

using namespace std;

int n,m;
int a[110][110];
int sum[110][110];
int maxlen;

int check(int k)
{

    for(int x1=1;x1+k-1<=n;x1++)
    {
        for(int y1=1;y1+k-1<=m;y1++)
        {
            int x2=x1+k-1;
            int y2=y1+k-1;
            int S=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];//得到(x1,y1)与(x2,y2)包围的正方形面积
            if(S%k==0&&S/k==k)//若面积是当前边长的平方则可行
            {
                maxlen=max(maxlen,k);
                return 1;
            }
        }
    }
    return 0;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];//构造前缀和
        }
    }
    //二分法找最大的边长
    int l=1,r=min(n,m);
    while(l<r)
    {
        int mid=(l+r+1)>>1;
        if(check(mid))
        {
            l=mid;
        }
        else
        {
            r=mid-1;
        }
    }
    check(l);//为开局就l=r做的
    cout<<maxlen<<endl;
}

拓展:关于二分


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值