题160.洛谷P1387 前缀和与差分-最大正方形
一、题目
二、题解
题目要你在0,1矩阵中找到最大的由1组成的正方形,输出它的边长。我们要解决两个问题,第一个是只由1组成的正方形如何在里头确定,第二个是最大边长我们怎么求出来。对一,我们可以求出正方形的面积,显然若正方形都是由1组成,那么面积一定等于边长的平方,而求面积在这里我们可以用二维前缀和来得到(区间求和,时间为O(1))。对二,我们要从1开始一直到min(n,m)去试可行的边长,以求出最大,为了使找寻的效率更高,我们不妨使用二分法来去查找(由于每次试边都是试mid,若mid可行,那么我们应该向后继续找是否有更大的边满足,所以我们应该在mid可行之后做将l置为mid的操作,即将区间变为后半段,反之则将区间变成前半段,表示mid太大了,再往小的找找吧,毕竟你要知道一点,在z合格都是1组成的正方形,如果你连小的边都没法满足,那大的又怎么可能有满足的呢)。
#include <bits/stdc++.h>
using namespace std;
int n,m;
int a[110][110];
int sum[110][110];
int maxlen;
int check(int k)
{
for(int x1=1;x1+k-1<=n;x1++)
{
for(int y1=1;y1+k-1<=m;y1++)
{
int x2=x1+k-1;
int y2=y1+k-1;
int S=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];//得到(x1,y1)与(x2,y2)包围的正方形面积
if(S%k==0&&S/k==k)//若面积是当前边长的平方则可行
{
maxlen=max(maxlen,k);
return 1;
}
}
}
return 0;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];//构造前缀和
}
}
//二分法找最大的边长
int l=1,r=min(n,m);
while(l<r)
{
int mid=(l+r+1)>>1;
if(check(mid))
{
l=mid;
}
else
{
r=mid-1;
}
}
check(l);//为开局就l=r做的
cout<<maxlen<<endl;
}
拓展:关于二分