题284.dp数字三角形模型-acwing-Q1015--摘花生

本文通过ACwing的Q1015摘花生问题,详细解析了使用动态规划(dp)解决数字三角形问题的过程。首先定义dp数组,表示到达某位置时能摘到的最大花生数;然后给出递推公式,初始化dp数组,并自顶向下填充;最后输出最大路径花生数。该题解清晰地展示了dp五步法的应用。
摘要由CSDN通过智能技术生成


题284.dp数字三角形模型-acwing-Q1015–摘花生


一、题目

在这里插入图片描述
在这里插入图片描述

二、题解

本题按dp五步法分析如下:
1.确定dp数组,明确含义:dp[i][j]表示从左上角走到右下角(i,j)位置时可摘到的最大花生数目
2.确定递推公式:采用y式dp分析法
在这里插入图片描述
由上图可知,公式为:dp[i][j]=max(dp[i-1,j]+w[i,j],dp[i][j-1]+w[i][j])
3.初始化dp数组:显然都初始化为0就好
4.确定遍历顺序:需要用靠近左上角的数据去求出后面的数据所以显然是i:1->R,j:1->C遍历
5.打印dp数组

#include <bits/stdc++.h>

using namespace std;

const int maxn=110;

int m[maxn][maxn];
int dp[maxn][maxn];

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        fill(m[0],m[0]+maxn*maxn,0);
        fill(dp[0],dp[0]+maxn*maxn,0);
        int R,C;
        cin>>R>>C;
        for(int i=1;i<=R;i++)
        {
            for(int j=1;j<=C;j++)
            {
                cin>>m[i][j];
            }
        }
        for(int i=1;i<=R;i++)
        {
            for(int j=1;j<=C;j++)
            {
                dp[i][j]=max(dp[i-1][j]+m[i][j],dp[i][j-1]+m[i][j]);
            }
        }
        cout<<dp[R][C]<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值