MTT板子 (任意模数NTT,任意模数多项式乘法)

MTT

  • 用了 5 5 5 F F T FFT FFT

P4245 【模板】任意模数多项式乘法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double lld;

const int mo=998244353, N=1e6+5;
struct MTT 
{
    struct cp 
    {
        lld x,y;
        inline void init() { x=y=0; }
        cp operator + (const cp& t) const { return {x+t.x,y+t.y}; }
        cp operator - (const cp& t) const { return {x-t.x,y-t.y}; }
        cp operator * (const cp& t) const { return {x*t.x-y*t.y,x*t.y+y*t.x}; } 
    }p1[N],p2[N],g[N];
    lld Pi=acos(-1);
    int rev[N];
    void fft(cp *a,int len,int inv)
    {
        for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
        for(int mid=1;mid<len;mid<<=1)
        {
            cp Wn=cp({cos(Pi/mid),inv*sin(Pi/mid)});
            for(int i=0;i<len;i+=mid*2)
            {
                cp w=cp({1,0});
                for(int j=0;j<mid;j++,w=w*Wn)
                {
                    cp x=a[i+j],y=w*a[i+j+mid];
                    a[i+j]=x+y,a[i+j+mid]=x-y;
                }
            }
        }
    }
    void mul(int *as,int *a,int n,int *b,int m,int mo) 
    {
        for(int i=0;i<n;i++) {
            int x=a[i];
            int aa=x>>15,bb=x&0x7fff;
            p1[i]={(lld)aa,(lld)bb};
            p2[i]={(lld)aa,-(lld)bb};
        }
        for(int i=0;i<m;i++) {
            int x=b[i];
            int aa=x>>15,bb=x&0x7fff;
            g[i]={(lld)aa,(lld)bb};
        }
        int len=2;
        while(len < n+m) len <<= 1;
        for(int i=0;i<len;i++) rev[i] = (rev[i>>1]>>1)|((i&1)?len>>1:0);
        fft(p1,len,1); fft(p2,len,1); fft(g,len,1);
        for(int i=0;i<len;i++) g[i].x/=len,g[i].y/=len;
        for(int i=0;i<len;i++) p1[i]=p1[i]*g[i],p2[i]=p2[i]*g[i];
        fft(p1,len,-1); fft(p2,len,-1);
    
        for(int i=0;i<m+n;i++) 
        {
            ll ans=0,a1b1=0,a2b2=0,a1b2=0,a2b1=0;
            a1b1=(ll)floor((p1[i].x+p2[i].x)/2+0.49)%mo;
            a1b2=(ll)floor((p1[i].y+p2[i].y)/2+0.49)%mo;
            a2b1=((ll)floor(p1[i].y+0.49)-a1b2)%mo;
            a2b2=((ll)floor(p2[i].x+0.49)-a1b1)%mo;
            ans=(((((a1b1<<15)%mo+(a1b2+a2b1))%mo)<<15)%mo+a2b2)%mo;
            ans+=mo; ans%=mo;
            as[i]=ans;
        }
        for(int i=0;i<len;i++) { p1[i].init(); p2[i].init(); g[i].init(); }
        //return n+m;
    }
}MT;
int f[N], g[N];
int main() 
{ 
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    int n,m,p;
    cin>>n>>m>>p;
    for(int i=0;i<=n;i++) cin>>f[i];
    for(int i=0;i<=m;i++) cin>>g[i];
    MT.mul(f,f,n+1,g,m+1,p);
    for(int i=0;i<=n+m;i++) cout<<f[i]<<' ';
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yezzz.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值