pytorch
文章平均质量分 58
pytorch学习笔记
别摆了,张同学
这个作者很懒,什么都没留下…
展开
-
pytorch学习--UNet模型
详细Unet网络结构可以查看Unet算法原理详解深度网络训练之中需要大量的有标样本,Unet作者提供了一种新的训练方法,可以更有效的运用相应的有标样本,使网络即使通过少量的训练图片也可以进行更精确的分割。这里只是记录一下近期在网站资源上学到的Unet模型项目的代码,代码中有较详细的解释(学习笔记)代码来源:GitHub - qiaofengsheng/pytorch-UNet: pytorch搭建自己的unet网络,训练自己的数据集。 B站视频地址全程带你手撸代码:https://www.bilibili.原创 2022-07-13 19:15:16 · 5119 阅读 · 0 评论 -
猫狗数据集.csv
猫狗数据集,1000张猫🐱,1000张狗🐕,csv格式的github链接猫狗数据集原创 2022-05-21 10:30:03 · 394 阅读 · 0 评论 -
No module named ‘pycocotools’报错简单一步解决
今天在加载COCO数据集的时候,出现了No module named 'pycocotools'问题报错,网上的一些解决方案大多为去下载原创 2022-05-10 17:50:38 · 7497 阅读 · 1 评论 -
计算机视觉——图像增强
一、常用的图像增广方法1.1翻转和裁剪使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。import matplotlib.pyplot as pltimport torchimport torchvisionfrom torch import nnfrom d2l import torch as d2ld2l.set_figsize()img = d2l.Image.open('img/cat1.jpg')原创 2022-04-29 18:19:36 · 1829 阅读 · 0 评论 -
pytorch学习——深度卷积神经网络(AlexNet)
一、AlexNet模型AlexNet比相对较小的LeNet5要深得多。 AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。在激活函数的运用上,AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。 一方面,ReLU激活函数的计算更简单,它不需要如sigmoid激活函数那般复杂的求幂运算。 另一方面,当使用不同的参数初始化方法时,ReLU激活函数使训练模型更加容易。 当sigmoid激活函数的输出非常接近于0或1时,这些区域的梯度几乎为0,因此反向传播无法继续更新原创 2022-04-23 14:45:00 · 1039 阅读 · 0 评论 -
from d2l import torch as d2l这个语句中torch报错的解决方法
最近在看《动手学深度学习》时书写上面的代码时,会有 from d2l import torch as d2l这个语句中torch报错,原因是没有导入这个d2l包,如何导入这个库呢1、打开Anaconda Prompt2、 在Anaconda Prompt中输入下面语句,进入环境conda activate pytorchpytorch是当时你创建pytorch环境时安放在Anaconda中的环境所在地,根据自己的情况改变3、安装d2l库输入下面语句,下载完成后就可以了(如果你原创 2022-04-23 10:23:09 · 13838 阅读 · 0 评论 -
pytorch学习——卷积神经网络的函数
卷积函数卷积函数是构建神经网络的重要支架,通常Pytorch的卷积运算是通过nn.Conv2d来完成。nn.Conv2d函数:torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')参数说明:in_channels(int):输入信号的通道out_channels(int):卷积原创 2022-04-23 09:02:47 · 2107 阅读 · 0 评论 -
pytorch学习——使用LeNet-5模型对CIFAR-10数据集进行训练
LeNet5这个经典的卷积神经网络,它有3个全连接层,输出维度分别是120,84,10。一、下载CIFAR-10数据集可以通过pytorch的数据集加载工具进行CIFAR-10数据集下载代码中各个参数的含义在下面的代码段中标识,请读者按需自取;import torchimport torchvisionimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport numpy as n原创 2022-04-17 12:27:50 · 4610 阅读 · 1 评论 -
pytorch学习———numpy基础
1、获取数据方式一:通过random.choice函数从指定的样本中随机抽取数据import numpy as npfrom numpy import random as nra=np.arange(1,25,dtype=float)//arange函数与python里的range函数一样用法,左闭右开;c1=nr.choice(a,size=(3,4)) #size指定输出数组形状c2=nr.choice(a,size=(3,4),replace=False) #replace缺原创 2022-04-12 10:49:53 · 501 阅读 · 0 评论 -
pytorch学习(一)tensorboard
tensorboard可视化原创 2022-04-05 04:00:00 · 883 阅读 · 0 评论