任意门
Grammy is playing a boring racing game named Easy Gliding. The game’s main content is to reach the destination as fast as possible by walking or gliding. The fastest player wins.
Each player controls a character on a two-dimensional plane. A character can walk at any moment with a speed of V1. Especially, when a character touches a gliding point, he/she can glide with a speed of V2 for the following 3 seconds. It is guaranteed that V1<V2.
Now Grammy locates at point S and she knows the coordinates of all the gliding points p1,p2,…,pn. The goal is to reach point T as fast as possible. Could you tell her the minimum time she has to spend to reach point T?
Input
The first line contains one integer n (1≤n≤1000), denoting the number of gliding points.
The following n lines describe the gliding points. The i-th line contains two integers xi,yi (−1000000≤xi,yi≤1000000), representing the coordinates of the i-th gliding point pi.
The next line contains four integers Sx,Sy,Tx,Ty (−1000000≤Sx,Sy,Tx,Ty≤1000000), representing the coordinates of S and T.
The next line contains two integers V1,V2 (1≤V1<V2≤1000000), representing the speed of walking and gliding.
Output
Output the minimum time Grammy has to spend to reach point T in one line. Your answer will be considered correct if its absolute or relative error does not exceed 10−6.
Examples
input
2
2 1
0 3
0 0 4 0
10 11
output
0.400000000000
input
2
2 1
-2 0
0 0 4 0
1 2
output
3.354101966250
input
2
2 1
-2 0
0 0 4 0
1 10000
output
2.000600000000
这题看起来很难,其实就是最短路,先求出起点到终点,起点到每个滑翔点,各个滑翔点之间,每个滑翔点到终点之间的距离,现在就变成一个典型的最短路问题,直接dijkstra算法解决问题。
最短路问题扩充
最短路可以分为单源最短路,多源汇最短路(起点和终点都不确定)
稠密图用朴素版dijk算法,稀疏图用堆优化版本。
dijkstra基于贪心,floyd基于动态规划,bellman基于离散数学。
稠密图用邻接矩阵来求,稀疏图用用邻接表来存。
朴素版dijkstra
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true;//把自环给干掉了
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
//存在重边和自环
g[a][b] = min(g[a][b], c);
}
printf("%d\n", dijkstra());
return 0;
}
堆优化dijkstra
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[ver] + w[i])
{
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra() << endl;
return 0;
}
回归到本题:直接用输入顺序的下标来映射输入的横纵坐标值,因为这个图是个完全无向图,所以计算出每两点之间所使用的时间,的然后跑一遍dijstra求最短时间即可。有一个坑是double类型的变量不能用memset进行赋值,用for循环才能实现。因为是无向图,链式前向星的e数组,边数数组和权值数组要开两倍的空间。完全图的建图方法,方法如下。
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
#define int long long
const int maxn = 1001000;
int n;
int tot;
int v1, v2;
int head[maxn];
double to[maxn];
bool vis[maxn];
struct point{
int x;
int y;
}p[maxn], s, t;
struct edge{
int to;
double val;
int from;
int nxt;
}e[2 * maxn];
double get_dis(const point & a, const point & b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
void add(int x, int y, double val){
tot++;
e[tot].to = y;
e[tot].from = x;
e[tot].val = val;
e[tot].nxt = head[x];
head[x] = tot;
}
void dij(int x){
for(int i = 1; i <= n + 1; i++) to[i] = 0x3f3f3f3f;
priority_queue<pair<double, int> > q;
to[x] = 0;
q.push(make_pair(-to[x], x));
while(!q.empty()){
int u = q.top().second;
q.pop();
if(vis[u]) continue;
vis[u] = 1;
for(int i = head[u]; i != -1; i = e[i].nxt){
int v = e[i].to;
if(to[v] > to[u] + e[i].val){
to[v] = to[u] + e[i].val;
q.push(make_pair(-to[v], v));
}
}
}
}
signed main(){
cin >> n;
for(int i = 1; i <= n; i++) cin >> p[i].x >> p[i].y;
memset(head, -1, sizeof(head));
cin >> s.x >> s.y >> t.x >> t.y;
cin >> v1 >> v2;
for(int i = 1; i < n; i++){//连接每一个滑翔点
for(int j = i + 1; j <= n; j++){
double dis = get_dis(p[i], p[j]);
if(dis > v2 * 3.0){//分情况构造所花时间的无向图
add(i, j, 3.0 + (dis - v2 * 3.0) / v1);//记录从i到j要花的时间
add(j, i, 3.0 + (dis - v2 * 3.0) / v1);
}
else{
add(i, j, dis / v2);
add(j, i, dis / v2);
}
}
}
for(int i = 1; i <= n; i++){//将起点和终点连接
add(0, i, get_dis(p[i], s) / v1);
add(i, 0, get_dis(p[i], s) / v1);
double dis = get_dis(p[i], t);
if(dis > v2 * 3.0){
add(i, n + 1, 3.0 + (dis - v2 * 3.0) / v1);
add(n + 1, i, 3.0 + (dis - v2 * 3.0) / v1);
}
else{
add(i, n + 1, dis / v2);
add(n + 1, i, dis / v2);
}
}
double dis = get_dis(s, t);//连接起点和终点
add(0, n + 1, dis / v1);
add(n + 1, 0, dis / v1);
dij(0);//最短路
printf("%.10lf\n", to[n + 1]);
}