一、一元三次方程求解
当然这一道题我觉得不是纯粹的二分,只不过放在二分里面了。
a,b,c,d=map(float,input().split())
x=-100
while x<=100:
if -0.01<a*x**3+b*x**2+c*x+d<0.01:
print("%.2f"%x,end=" ")
x+=0.01
二、数的三次方根
我在这里一开始用的是>>1,但是超时了,但是/2不超时
在 Python 中,使用 >>1 进行二进制右移操作实际上等价于将一个数除以 2 后向下取整。这种操作方式比使用 /2 或 //2 运算符来进行整数除法运算要快一些,因为它是通过位运算实现的,而不需要进行实际的除法运算。然而,在某些情况下,使用位运算进行除法运算可能会导致错误或超时。因此,如果您的代码超时或者出现了错误,请尝试使用 /2 或 //2 运算符来代替 >>1 运算符。
l,r=-10000,10000
n=float(input())
while r-l>10**-8:
mid=(r+l)/2
if mid**3<=n:
l=mid
else:
r=mid
print("%.6f"%l)
三、数的范围
n,q=map(int,input().split())
nums=list(map(int,input().split()))
while q:
l,r=0,n-1
m=int(input())
while l<r:#第一个二分,查找nums中第一个大于等于m的数
mid=l+r>>1
if m<=nums[mid]:
r=mid
else:
l=mid+1
if nums[l]==m:#第二个二分,查找nums最后一个小于等于m的数
print(l,end=" ")
else:
print(-1,end=" ")
l,r=0,n-1
while l<r:
mid=l+r+1>>1
if m>=nums[mid]:
l=mid
else:
r=mid-1
if nums[l]==m:
print(l)
else:
print(-1)
q-=1
四、分巧克力
n,k=map(int,input().split())
l,r=0,100000
h=[0]*100010
w=[0]*100010
for i in range(n):
h[i],w[i]=map(int,input().split())
def check(mid):
res=0
for i in range(n):
res+=(h[i]//mid)*(w[i]//mid)
if res>=k:
return True
return False
while l<r:
mid=l+r+1>>1
if check(mid):
l=mid
else: r=mid-1
print(l)
五、四平方和
在这里如果用二分+数组的话会超时,所以这里用字典
n=int(input())
dic={}
c,d=0,0
while c*c<=n:
d=c
while c*c+d*d<=n:
if dic.get(c*c+d*d)==None:
dic[c*c+d*d]=(c,d)
d+=1
c+=1
flag=False
a,b=0,0
while a*a<=n:
b=a
while a*a+b*b<=n:
x=n-a*a-b*b
if dic.get(x)!=None:
flag=True
print(a,b,dic[x][0],dic[x][1])
break
b+=1
if flag:
break
a+=1
六、机器人跳跃问题
n=int(input())
h=list(map(int,input().split()))
def check(u):
for i in range(n):
u=2*u-h[i]
if u<0:
return False
return True
l,r=0,100000
while l<r:
mid=l+r>>1
if check(mid):r=mid
else:l=mid+1
print(l)
七、我在哪?
写法一:暴力法
用set保存
n=int(input())
s=input()[:n]
t=set()
res=1
for i in range(n):
for j in range(i+1,n):
mp=s[i:j+1] if j+1<n else s[i:]
if mp in t:
res=max(res,j-i+2)#如果最大为ABC有重复的话,那么可以看到至少4个数确定位置
else: t.add(mp)
print(res)
写法二:只不过用了python的自带库函数
from collections import defaultdict
N = int(input())
map = input()[:N]
l, r = 0, N-1
while l < r:
flag, mid, have = True, (l + r) >> 1, defaultdict(bool)
for i in range(N-mid+1):
mapi = map[i:i+mid]
if have[mapi]:
flag = False
break
else:
have[mapi] = True
if flag:
r = mid
else:
l = mid + 1
print(r)
写法三:运用dict
n,s=int(input()),input()
for i in range(1,n+1):
d,tag=dict(),0
for l in range(n-i+1):#注意比较这个区间和上面的区别,上面是前查后,这里是后查前,因此最后一个不能省
a=s[l:l+i]
if a in d:
tag=1
break
else:d[a]=1
if tag:continue
print(i)
exit(0)