IDEA+MapReduce+Hive综合实践——搜狗日志查询分析

1.下载数据源

打开搜狗实验室链接:搜狗搜索引擎 - 上网从搜狗开始,由于搜狗实验室链接打不开了,所有这里自己制作数据(阿里云盘分享)进行实验。

SogouQ.txt:

2.上传下载文件至HDFS

2.1将下载的文件通过FinalShell工具上传到Linux系统

2.2查看SogouQ.txt并上传到HDFS

可以用tail命令查看解压文件最后3行的数据

tail -3 SogouQ.txt

查询词为中文,这里编码按GBK查出来是乱码,编码时指定为‘UTF-8’可避免乱码。数据格式如前面的说明:

访问时间  用户ID  [查询词]  该URL在返回结果中的排名  用户点击的顺序号  用户点击的URL

上传至HDFS:

hdfs dfs -put SogouQ.txt /

3. 数据清洗

    因为原始数据中有些行的字段数不为6,且原始数据的字段分隔符不是Hive表规定的逗号',',所以需要对原始数据进行数据清洗。

   通过编写MapReduce程序完成数据清洗:(打包运行)

 (1)将不满足6个字段的行删除

 (2)将字段分隔符由不等的空格变为逗号‘,’分隔符

idea新建Maven工程:MRHiveLog

新建工程目录结构如下:

修改pom.xml文件

在</project>一行之前添加如下语句

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.1.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <!-- main()所在的类,注意修改为包名+主类名 -->
                                    <mainClass>com.wang.App</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

 添加依赖:在  </dependencies>一行之前添加如下语句:

  <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.7.3</version>
        </dependency>
    </dependencies>

新建SogouMapper类:

package com.wang;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
 
import java.io.IOException;
 
//                                         k1   ,    v1,   k2   ,  v2
public class SogouMapper extends Mapper<LongWritable,Text,Text,NullWritable> {
 
    @Override
    /**
     * 在任务开始时,被调用一次。且只会被调用一次。
     */
    protected void setup(Context context) throws IOException, InterruptedException {
        super.setup(context);
    }
 
    @Override
    protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException {
        //避免乱码
        //数据格式:20111230000005  57375476989eea12893c0c3811607bcf 奇艺高清  1  1  http://www.qiyi.com/
        String data = new String(v1.getBytes(),0,v1.getLength(),"utf8");
        
        //split("\\s+") \\s+为正则表达式,意思是匹配一个或多个空白字符,包括空格、制表、换页符等。
        //参考:http://www.runoob.com/java/java-regular-expressions.html
        String words[] = data.split("\\s+");
        
        //判断数据如果不等于6个字段,则退出程序
        if(words.length != 6){
            return;//return语句后不带返回值,作用是退出该程序的运行  https://www.cnblogs.com/paomoopt/p/3746963.html
        }
        //用逗号代替空白字符
        String newData = data.replaceAll("\\s+",",");
        //输出
        context.write(new Text(newData),NullWritable.get());
    }
 
    @Override
    /**
     * 在任务结束时,被调用一次。且只会被调用一次。
     */
    protected void cleanup(Context context) throws IOException, InterruptedException {
        super.cleanup(context);
    }
}

App.lava

package com.wang;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


/**
 * 数据清洗器 主类
 *
 */
public class App
{
    public static void main( String[] args ) throws Exception {
        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf);
        job.setJarByClass(App.class);

        //指定map输出
        job.setMapperClass(SogouMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //指定reduce的输出
        job.setOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //指定输入、输出
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        //提交job,等待结束
        job.waitForCompletion(true);

    }
}

打包工程: 

上传到Linux: FinalShell工具:

3.运行jar包

 hadoop jar MRHiveLog-1.0-SNAPSHOT.jar /SogouQ.txt /oneday

 查看输出结果

hdfs dfs -ls /oneday

查看输出文件最后10行数据:

 hdfs dfs -tail /oneday/part-r-00000

进入hive:

创建表:

create table sogoulog_1(accesstime string,useID string,keyword string,no1 int,clickid int,url string) row format delimited fields terminated by ',';

将MapReduce清洗后的数据导入Hive

load data inpath 'Oneday/part-r-00000' into table sogoulog_1;

使用SQL查询满足条件的数据(只显示前10条)

 select * from sogoulog_1 where no1=2  limit 10;

完成。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Traveler飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值