简单斐波那契

简单斐波那契

以下数列 0 1 1 2 3 5 8 13 21 … 被称为斐波纳契数列。

这个数列从第 3 项开始,每一项都等于前两项之和。

输入一个整数 N,请你输出这个序列的前 N 项。

输入格式
一个整数 N。

输出格式
在一行中输出斐波那契数列的前 N 项,数字之间用空格隔开。

数据范围
0<N<46
输入样例:
5
输出样例:
0 1 1 2 3

提交代码

import java.util.*;

public class Main
{
    static int n;
    static int [] f = new int [50];
    static int fc(int n)
    {
        if (f[n] != 0) return f[n];
        if (n == 0) f[n] = 0;
        if (n == 1) f[n] = 1; 
        if (n > 1) f[n] = fc(n - 1) + fc(n - 2);
        return f[n];
    }
    public static void main(String [] args)
    {
        Scanner in = new Scanner (System.in);    
        n = in.nextInt();
        int f1 = 0, f2 = 1;
        fc(n);
        for (int i = 0; i < n; ++ i)
        {
            System.out.print(f[i] + " ");
        }
    }
}

滑动窗口

给定一个大小为 n≤106 的数组。

有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。

你只能在窗口中看到 k 个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为 [1 3 -1 -3 5 3 6 7],k 为 3。

窗口位置 最小值 最大值
[1 3 -1] -3 5 3 6 7 -1 3
1 [3 -1 -3] 5 3 6 7 -3 3
1 3 [-1 -3 5] 3 6 7 -3 5
1 3 -1 [-3 5 3] 6 7 -3 5
1 3 -1 -3 [5 3 6] 7 3 6
1 3 -1 -3 5 [3 6 7] 3 7
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式
输入包含两行。

第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。

第二行有 n 个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式
输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7

提交代码

C++

#include<iostream>
using namespace std;

const int N = 1000010;
int a[N], q[N], hh, tt = -1;

int main()
{
    int n, k;
    cin >> n >> k;
    for (int i = 0; i < n; ++ i)    // 这个题要注意的是 q队列里面存放的是位置
    {
        scanf ("%d", &a[i]);        // 先求的是最小值
        if (i - k + 1 > q[hh]) ++hh;  // 如果最小值的位置已经滑出窗口了 然后就
                                    // ++ hh代表这个数已经没了
        while (hh <= tt && a[i] <= a[q[tt]]) -- tt; // 先确保队列里面有数字
                                    // 然后如果新来的数字要小于 队列里面的最小值
                                    // 那么--tt 就代表当前队列的最小值去掉
        q[++ tt] = i;  // 把新来的数字放到队列中
        if (i + 1 >= k) printf ("%d ", a[q[hh]]); // 当前队列的长度已经满足k了
                                    // 就可以把对首的元素输出出来
    }
    puts("");
    int hh = 0, tt = -1;
    for (int i = 0; i < n; ++ i)
    {
        if (i - k + 1 > q[hh]) ++ hh;
        while (hh <= tt && a[i] >= a[q[tt]]) -- tt;
        q[++ tt] = i;
        if (i + 1 >= k) printf("%d ", a[q[hh]]);
    }
    return 0;
}

Java

import java.io.*;

public class Main
{
    final static int N = 1000010;
    static int [] a = new int [N];
    static int [] q = new int [N];
    static int hh = 0, tt = -1;
    public static void main(String[] args) throws IOException
    {
        int n, k;
        BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
        
        String [] str = reader.readLine().split(" ");
        n = Integer.parseInt(str[0]);
        k = Integer.parseInt(str[1]);
        
        str = reader.readLine().split(" ");
        for (int i = 0; i < n; ++ i) a[i] = Integer.parseInt(str[i]);
        
        // for (int i = 0; i < n; ++ i)
        // {
        //     if (hh <= tt && i - k + 1 > q[hh])  ++ hh;
        //     while (hh <= tt && a[i] <= a[q[hh]]) -- tt;
        //     q[++ tt] = i;
        //     if (i + 1 >= k) out.write(a[q[hh]]+" ");
        // }
        
        for(int i = 0; i < n; i ++)
        {
            if(hh <= tt && i - q[hh] + 1 > k) hh++;//判断队头是否已经滑出窗口
            while(hh <= tt && a[q[tt]] >= a[i]) tt--;//出队

            q[++tt] = i;//入队
            if(i >= k - 1) out.write(a[q[hh]]+" ");
        }
        
        out.write("\n");
        hh = 0;
        tt = -1;
        // for (int i  = 0; i < n; ++ i)
        // {
        //     if (hh <= tt && i - k + 1 > q[hh]) ++ hh;
        //     while (hh <= tt && a[i] >= a[q[hh]]) -- tt;
        //     q[++ tt] = i;
        //     if (i + 1 >= k) out.write(a[q[hh]]+" ");
        // }
        for(int i = 0; i < n; i ++)
        {
            if(hh <= tt && i - q[hh] + 1 > k) hh++;//判断队头是否已经滑出窗口
            while(hh <= tt && a[q[tt]] <= a[i]) tt--;//出队

            q[++tt] = i;//入队
            if(i >= k - 1) out.write(a[q[hh]]+" ");
        }
        out.flush();
        out.close();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客李华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值