动态求连续区间和

文章介绍了如何使用线段树数据结构处理动态求解数组子序列连续和的问题。给出了一种C++和Java的实现方法,包括建立线段树、查询和修改操作,以及具体的代码示例。
摘要由CSDN通过智能技术生成

动态求连续区间和

给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和。

输入格式
第一行包含两个整数 n 和 m,分别表示数的个数和操作次数。

第二行包含 n 个整数,表示完整数列。

接下来 m 行,每行包含三个整数 k,a,b (k=0,表示求子数列[a,b]的和;k=1,表示第 a 个数加 b)。

数列从 1 开始计数。

输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。

数据范围
1≤n≤100000,
1≤m≤100000 ,
1≤a≤b≤n,
数据保证在任何时候,数列中所有元素之和均在 int 范围内。

输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8
输出样例:
11
30
35

算法思路
在这里插入图片描述
1、lowbit(x):返回x的最后一位1

2、add(x,v):在x位置加上v,并将后面相关联的位置也加上v

3、query(x):询问x的前缀和

具体代码

C++

#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
int n, m;
int w[N];
struct Node{  // 这个Node的含义为区间[l, r]的sum值是多少 线段树的本质就是一个二叉树 所以后面的所有操作本质就是二叉树的那一套
    int l, r;
    int sum;
}tr[4 * N];

void push_up(int u) // 通过左右孩子计算父亲的值的函数
{ 
    tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;  // 父节点的值 等于左右孩子的值相加 u << 1 相当于 u * 2;
}
void build(int u, int l, int r) // 建立线段树的函数 第一个参数为当前结点的编号,第二个参数为左边界,第三个参数为右边界
{
    if (l == r) tr[u] = {l, r, w[r]}; // 如果当前结点已经是叶子节点了 那么就可以直接把权值赋值给这个 线段树上面的结点了
    else  // 如果当前区间的左右边界不相同 说明当前区间的长度至少是2(这里的理解可以通过看线段树的图来理解,线段树是一个大区间不断分成一个一个的小区间)
    // 直到分到不能再分为止 如果这个区间的长度不小于2 那么这个区间的左右边界 就不相等 那么这个区间就可以继续分
    {
        tr[u] = {l, r};  // 先对u这个结点的左右边界赋值一下 规定这个u结点表示的区间范围
        int mid = l + r >> 1;
        // 把结点u的左右儿子都算出来
        build(u << 1, l, mid);  // 先递归下左儿子 
        build(u << 1|1, mid + 1, r);  // 再递归下右儿子
        push_up(u);  // 然后再通过这个函数算出u结点 包含区间的值
    }
}
int query(int u, int l, int r)  // 查询的过程是从根结点开始往下找对应的区间的 所以第一个参数可以说默认就是1了
{
    if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;  // 如果当前的这个结点所表示的区间被 我们需要的区间
    // 完全包含 那么就直接返回这个区间的值
    
    // 反之就对没有完全包含的子区间 分割 知道 分到 子区间的某个子区间 被完全包含为止
    int mid = tr[u].l + tr[u].r >> 1; // 先计算下 当前这个区间 与[l, r]有没有交集 交集在那一部分
    int sum = 0;  // 区间[l, r]的和
    
    // 这两句话的理解要加上二叉树的那个图像 才好理解 本质就是不断缩小区间然后 知道 寻找到一个u的左右边界 被[l, r]
    // 完全包含
    if (mid >= l) sum += query(u << 1, l, r); // 看看当前的区间的中点与待查区间的左边有没有交集
    if (mid + 1 <= r) sum += query(u << 1 | 1, l, r); // 再看看这个u这个区间的中点与[l, r]的右边有没有交集
    
    return sum;
}
void modify(int u, int x, int v) // 第一个参数还是默认根结点, 后面就是 在x的基础上加上v
{
    if (tr[u].l == tr[u].r) tr[u].sum += v;  // 找到根结点了
    else 
    {
        int mid = tr[u].l + tr[u].r >> 1;
        
        // 寻找一下x是在u结点区间的左半边还是右半边
        if (x <= mid) modify(u << 1, x, v); // 在左半边的情况
        else modify(u << 1 | 1, x , v);  // 在右半边的情况
        
        // 更新完之后在往上把与被修改的叶子结点 有关联的父结点的值都修改一遍
        push_up(u);
    }
}
int main()
{
    scanf ("%d%d", &n, &m);
    for (int i = 1; i <= n; ++ i) scanf ("%d", &w[i]);
    build(1, 1, n);  // 构建 [1, n]区间的线段树
    while (m --) 
    {
        int k, a, b;
        scanf ("%d%d%d", &k, &a, &b);
        if (!k) printf("%d\n", query(1, a, b));
        else modify(1, a, b);
    }
    return 0;
} 

Java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class Main {
    static int N = 100010;
    static int n;
    static int m;
    static int[] w = new int[N];
    static Node[] tr = new Node[N * 4];
    //用子节点信息来更新当前节点信息(把信息往上传递)
    public static void pushUp(int u)
    {
        tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
    }
    //在一段区间上初始化线段树,其中u表示根结点,l表示左边界,r表示右边界
    public static void build(int u,int l,int r)
    {
        if(l == r) tr[u] = new Node(l,r,w[r]);
        else
        {
            tr[u] = new Node(l,r,0);
            int mid = l + r >> 1;
            build(u << 1,l,mid);
            build(u << 1 | 1,mid + 1,r);
            pushUp(u);
        }
    }
    //查询某段区间的和,其中u表示根结点,l表示左边界,r表示右边界
    public static int query(int u,int l,int r)
    {
        if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
        int mid = tr[u].l + tr[u].r >> 1;
        int sum = 0;
        if(l <= mid) sum = query(u << 1,l,r);
        if(r > mid) sum += query(u << 1 | 1,l,r);
        return sum;
    }
    //修改操作,在u结点中,x位置加上v
    public static void modify(int u,int x,int v)
    {
        if(tr[u].l == tr[u].r) tr[u].sum += v;
        else
        {
            int mid = tr[u].l + tr[u].r >> 1;
            if(x <= mid) modify(u << 1,x,v);
            else modify(u << 1 | 1,x,v);
            pushUp(u);
        }
    }
    public static void main(String[] args) throws IOException {
        BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
        String[] s1 = reader.readLine().split(" ");
        n = Integer.parseInt(s1[0]);
        m = Integer.parseInt(s1[1]);
        String[] s2 = reader.readLine().split(" ");
        for(int i = 1;i <= n;i++) w[i] = Integer.parseInt(s2[i - 1]);
        //搭建线段树
        build(1,1,n);

        while(m -- > 0)
        {
            String[] s3 = reader.readLine().split(" ");
            int k = Integer.parseInt(s3[0]);
            int x = Integer.parseInt(s3[1]);
            int y = Integer.parseInt(s3[2]);
            //k = 0 是询问[x,y]的区间和,k = 1是在x位置添加y元素
            if(k == 0) System.out.println(query(1,x,y));
            else modify(1,x,y);
        }
    }
}
//段结点
class Node
{
    public int l;//左边界
    public int r;//右边界
    public int sum;//当前块的总和

    public Node(int l,int r,int sum)
    {
        this.l = l;
        this.r = r;
        this.sum = sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客李华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值