动态求连续区间和
给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和。
输入格式
第一行包含两个整数 n 和 m,分别表示数的个数和操作次数。
第二行包含 n 个整数,表示完整数列。
接下来 m 行,每行包含三个整数 k,a,b (k=0,表示求子数列[a,b]的和;k=1,表示第 a 个数加 b)。
数列从 1 开始计数。
输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。
数据范围
1≤n≤100000,
1≤m≤100000 ,
1≤a≤b≤n,
数据保证在任何时候,数列中所有元素之和均在 int 范围内。
输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8
输出样例:
11
30
35
算法思路
1、lowbit(x):返回x的最后一位1
2、add(x,v):在x位置加上v,并将后面相关联的位置也加上v
3、query(x):询问x的前缀和
具体代码
C++
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int w[N];
struct Node{ // 这个Node的含义为区间[l, r]的sum值是多少 线段树的本质就是一个二叉树 所以后面的所有操作本质就是二叉树的那一套
int l, r;
int sum;
}tr[4 * N];
void push_up(int u) // 通过左右孩子计算父亲的值的函数
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum; // 父节点的值 等于左右孩子的值相加 u << 1 相当于 u * 2;
}
void build(int u, int l, int r) // 建立线段树的函数 第一个参数为当前结点的编号,第二个参数为左边界,第三个参数为右边界
{
if (l == r) tr[u] = {l, r, w[r]}; // 如果当前结点已经是叶子节点了 那么就可以直接把权值赋值给这个 线段树上面的结点了
else // 如果当前区间的左右边界不相同 说明当前区间的长度至少是2(这里的理解可以通过看线段树的图来理解,线段树是一个大区间不断分成一个一个的小区间)
// 直到分到不能再分为止 如果这个区间的长度不小于2 那么这个区间的左右边界 就不相等 那么这个区间就可以继续分
{
tr[u] = {l, r}; // 先对u这个结点的左右边界赋值一下 规定这个u结点表示的区间范围
int mid = l + r >> 1;
// 把结点u的左右儿子都算出来
build(u << 1, l, mid); // 先递归下左儿子
build(u << 1|1, mid + 1, r); // 再递归下右儿子
push_up(u); // 然后再通过这个函数算出u结点 包含区间的值
}
}
int query(int u, int l, int r) // 查询的过程是从根结点开始往下找对应的区间的 所以第一个参数可以说默认就是1了
{
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum; // 如果当前的这个结点所表示的区间被 我们需要的区间
// 完全包含 那么就直接返回这个区间的值
// 反之就对没有完全包含的子区间 分割 知道 分到 子区间的某个子区间 被完全包含为止
int mid = tr[u].l + tr[u].r >> 1; // 先计算下 当前这个区间 与[l, r]有没有交集 交集在那一部分
int sum = 0; // 区间[l, r]的和
// 这两句话的理解要加上二叉树的那个图像 才好理解 本质就是不断缩小区间然后 知道 寻找到一个u的左右边界 被[l, r]
// 完全包含
if (mid >= l) sum += query(u << 1, l, r); // 看看当前的区间的中点与待查区间的左边有没有交集
if (mid + 1 <= r) sum += query(u << 1 | 1, l, r); // 再看看这个u这个区间的中点与[l, r]的右边有没有交集
return sum;
}
void modify(int u, int x, int v) // 第一个参数还是默认根结点, 后面就是 在x的基础上加上v
{
if (tr[u].l == tr[u].r) tr[u].sum += v; // 找到根结点了
else
{
int mid = tr[u].l + tr[u].r >> 1;
// 寻找一下x是在u结点区间的左半边还是右半边
if (x <= mid) modify(u << 1, x, v); // 在左半边的情况
else modify(u << 1 | 1, x , v); // 在右半边的情况
// 更新完之后在往上把与被修改的叶子结点 有关联的父结点的值都修改一遍
push_up(u);
}
}
int main()
{
scanf ("%d%d", &n, &m);
for (int i = 1; i <= n; ++ i) scanf ("%d", &w[i]);
build(1, 1, n); // 构建 [1, n]区间的线段树
while (m --)
{
int k, a, b;
scanf ("%d%d%d", &k, &a, &b);
if (!k) printf("%d\n", query(1, a, b));
else modify(1, a, b);
}
return 0;
}
Java
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
static int N = 100010;
static int n;
static int m;
static int[] w = new int[N];
static Node[] tr = new Node[N * 4];
//用子节点信息来更新当前节点信息(把信息往上传递)
public static void pushUp(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
//在一段区间上初始化线段树,其中u表示根结点,l表示左边界,r表示右边界
public static void build(int u,int l,int r)
{
if(l == r) tr[u] = new Node(l,r,w[r]);
else
{
tr[u] = new Node(l,r,0);
int mid = l + r >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
pushUp(u);
}
}
//查询某段区间的和,其中u表示根结点,l表示左边界,r表示右边界
public static int query(int u,int l,int r)
{
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
int mid = tr[u].l + tr[u].r >> 1;
int sum = 0;
if(l <= mid) sum = query(u << 1,l,r);
if(r > mid) sum += query(u << 1 | 1,l,r);
return sum;
}
//修改操作,在u结点中,x位置加上v
public static void modify(int u,int x,int v)
{
if(tr[u].l == tr[u].r) tr[u].sum += v;
else
{
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) modify(u << 1,x,v);
else modify(u << 1 | 1,x,v);
pushUp(u);
}
}
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String[] s1 = reader.readLine().split(" ");
n = Integer.parseInt(s1[0]);
m = Integer.parseInt(s1[1]);
String[] s2 = reader.readLine().split(" ");
for(int i = 1;i <= n;i++) w[i] = Integer.parseInt(s2[i - 1]);
//搭建线段树
build(1,1,n);
while(m -- > 0)
{
String[] s3 = reader.readLine().split(" ");
int k = Integer.parseInt(s3[0]);
int x = Integer.parseInt(s3[1]);
int y = Integer.parseInt(s3[2]);
//k = 0 是询问[x,y]的区间和,k = 1是在x位置添加y元素
if(k == 0) System.out.println(query(1,x,y));
else modify(1,x,y);
}
}
}
//段结点
class Node
{
public int l;//左边界
public int r;//右边界
public int sum;//当前块的总和
public Node(int l,int r,int sum)
{
this.l = l;
this.r = r;
this.sum = sum;
}
}