使用 BFS 解决走迷宫问题
题目背景:
在一个由 0 和 1 构成的二维迷宫中,0 代表可以走的路径,而 1 代表墙或障碍物。任务是从迷宫的左上角出发,找到到达右下角的最短路径。这是计算机科学中的经典问题,对于理解图搜索和路径查找算法具有重要意义。
为何使用 BFS 和队列:
广度优先搜索(BFS)是一个层次化的搜索过程,首先访问起始节点,然后访问所有相邻的节点,再访问这些节点的邻居,以此类推。这种方法确保我们在探索更远的节点之前,首先探索所有近邻节点。
使用队列是实现 BFS 的关键。因为 BFS 要求我们首先访问早先加入的节点(先进先出),而队列具有这样的特性。我们从起点开始,将其加入队列,然后持续处理队列中的元素,每次从队头取出一个节点,访问它的邻居,并将未访问的邻居加入队尾。
解题思路及代码:
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int g[N][N];
int d[N][N];
PII q[N * N];
int bfs()
{
int hh = 0, tt = 0;
q[0] = {0, 0};
memset(d, -1, sizeof(d));
d[0][0] = 0;
int dx[4] = {-1, 0, 1, 0};
int dy[4] = {0, 1, 0, -1};
while(hh <= tt)
{
auto t = q[hh ++];
for (int i = 0; i < 4; ++ i)
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
{
d[x][y] = d[t.first][t.second] + 1;
q[++ tt] = {x, y};
}
}
}
return d[n - 1][m - 1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; ++ i)
{
for (int j = 0; j < m; ++ j) cin >> g[i][j];
}
cout << bfs() << endl;
return 0;
}
代码解释:
- 我们使用二维数组
g[][]
来存储迷宫信息。 d[][]
存储从起点到每个点的最短距离。q[]
是用来进行 BFS 的队列,每个元素表示迷宫中的一个点。dx[]
和dy[]
是方向数组,帮助我们方便地探索当前点的四个方向。bfs()
函数中,我们从起点开始,然后逐渐探索每一层直到到达终点或者探索完所有可能的路径。