- 博客(8)
- 收藏
- 关注
原创 VS(Visual Studio)如何修改注释的快捷键(换成Ctrl+/)
VS(Visual Studio)如何修改注释的快捷键(换成Ctrl+/)1.点击“工具”>“选项”2.点击“环境”>“键盘”3.在“显示命令包含”中输入“注释”4.并在“按快捷键”中输入“Ctrl+/”(按住键盘的‘Ctrl’键和‘ / ’键),再点击分配5.最后点击“确认键”注意:如果此时在程序李按住键盘的Ctrl键和/键没有起到注释和反注释的作用,说明其它功能占用着Ctrl+/快捷键,再在刚刚的“按快捷键”输入“Ctrl+/”,发现被“生成文档注释”这个功能占用,在这个
2022-03-01 20:15:53 20681 7
转载 Python装饰器
大家好,装饰器是一个经常被同学问起的概念。今天就给大家分享一篇对于装饰器的讲解文章。文章较长,涉及装饰器的细节较多,值得收藏细读。
2021-12-05 19:33:05 237 1
原创 支持向量机学习笔记(简记)
第六章 支持向量机文章目录第六章 支持向量机6.1 间隔与支持向量6.2 对偶问题6.3 核函数6.4 软间隔与正则化6.5 支持向量回归6.1 间隔与支持向量 ???Question:给定训练样本D=(X1,Y1)(X2,Y2),...,(Xm,Ym),Yi为−1或者+1D = {(X_1 , Y_1) (X_2,Y_2) , ... , (X_m, Y_m)} , Y_{i}为-1或者+1D=(X1,Y1)(X2,Y2),...,(Xm,Ym),Yi为−1或者+1,分类学习最基本
2021-10-31 19:56:49 282
原创 神经网络学习-简记
第五章 神经网络概述:本次组队学习主要完成了: 1.学习了神经网络的相关基础内容; 2.对相应的一些公式进行了推导。5.1 神经元模型 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络。图5.1 MP神经元模型 step1.神经网络基本单元——神经元(neuron) step2."M-P神经元模型经元接收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接(connection) 进行传递,神经元接收到的总输入值将与神经元的阀值进行比较,然后通过"激活函数
2021-10-29 10:08:27 373
原创 NLP学习笔记——BERT的一些应用(简记)
本文内容中:挑出pytorch 版的 BERT 相关代码,从代码结构、具体实现与原理,以及使用的角度进行分析Transformers版本:4.4.2(2021 年 3 月 19 日发布)1. 本节接着上节内容,本节具体内容: a) BERT-based Models应用模型 b) Bert解决NLP任务 - BertForSequenceClassification - BertForMultiChoice - BertForTokenClassification - B
2021-08-24 21:33:50 1553
原创 NLP学习————实现一个BERT(简记)
NLP学习————实现一个BERT(简记)本文主要内容是介绍了BERT的代码结构、具体实现与原理,对BERT的一些简记内容包括以下几个部分:BERT Tokenization 分词模型(BertTokenizer)BERT Model 本体模型(BertModel)BertEmbeddingsBertEncoderBertLayerBertAttentionBertIntermediateBertOutputBertPooler本文内容的结构图如下:具体的内
2021-08-22 21:54:07 673
原创 2021-08-21
NLP笔记——BERT和GPT简单记录一、BERT在模型架构方面,到目前为止,和 Transformer 是相同的(除了模型大小,因为这是我们可以改变的参数)可以理解为:一个训练好的 Transformer 的 decoder 的栈输入:1、token 是特殊的 [CLS],它的含义是分类(class的缩写)。输出:与transformer输出类似思考一个问题:(语境问题)如果我们使用 Glove 的词嵌入表示方法,那么不管上下文是什么,单词 “stick” 都只表示为同一个向量
2021-08-21 00:44:14 109
原创 2021-08-19
NLP学习笔记——attention和transformer一、Attention1、序列到序列(seq2seq)模型2.Attention二、transformer一、Attention在引入attention之前先要讨论下seq2seq。1、序列到序列(seq2seq)模型1)输入:一个(单词、字母、图像特征)序列;2)输出:另外一个序列。3)组成:a.编码器(Encoder)b.解码器(Decoder)4)模型原理a.-> 编码器(Encoder):(处理)输入序列中的每个元
2021-08-19 00:43:02 236
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人