智能算法
qq_51497433
这个作者很懒,什么都没留下…
展开
-
pso算法实现
f(x) 是一个 n 维向量。接下来,我们需要初始化粒子群的位置和速度。粒子群中的每个粒子都有一个位置向量 (x) 和一个速度向量 (v)。然后,我们计算每个粒子的适应度值,即目标函数的值。接着,我们更新每个粒子的速度和位置,这是PSO算法的核心步骤。最后,我们重复计算适应度值和更新粒子的速度和位置,直到满足终止条件为止。首先,我们需要定义目标函数,这是优化问题的核心。在这个示例中,我们使用了一个简单的更新规则来更新粒子的速度和位置。在实际应用中,你可能需要根据具体问题进行调整和优化。原创 2024-02-13 22:41:20 · 202 阅读 · 1 评论 -
鲸鱼优化算法MATLAB实现
search_space: 搜索空间的范围,例如 [-10, 10]% obj_function: 优化的目标函数。% num_whales: 鲸鱼的数量。% max_iter: 最大迭代次数。% dim: 问题的维度。原创 2024-01-19 11:19:15 · 544 阅读 · 1 评论