动态规划的图像压缩问题

本文探讨了利用动态规划解决图像压缩问题的方法,通过分段存储灰度值不同的像素来节省存储空间。动态规划算法用于寻找最优的分段策略,以平衡段内像素占用的位数和段头信息的消耗,从而实现最小存储位数。文章提供了具体的例子和代码实现,展示如何找到存储位数最少的分段策略。
摘要由CSDN通过智能技术生成

2022.5.15

动态规划的图像压缩问题
问题描述(参照算法设计与分析教材)

​ 计算机中的图像由一系列像点构成,每个像点称为一个像素,图像分辨率越高,使用的像素就越多,例如Windows桌面的图片经常使用的设置是1024×768个,大概达到106量级.图像传输和视频处理有时在1秒钟内要处理几十帧图片,这些图片的像素就很可观了,因此图像处理常常需要大量的存储空间和高的处理速度,图像压缩问题就成了计算机科学技术中的重要研究课题之一.

​ 以黑白图像的处理来说明图像压缩中的问题.每幅黑白图像由像点构成,每个像点具有灰度值,用0~255之间的整数表示.如果每个整数都用相同的二进制位来表示,那么需要用8个二进制位.假设一幅图像有n个像素,那么这n个像素的灰度值构成一个整数序列:P = <p1,p2,…,pn>

其中p表示第i个像素的灰度.存储这幅图片时,可以像数组一样连续把这些整数存起来,共需要8n个二进制位.

下面考虑一种图像压缩方法.一般来说,在一幅图片中许多连续区域中像点的灰度值是接近的.比如有些交通标志图片,大片的区域是白的,可能少量区域有颜色,而且是比较单调的颜色.对这样的图片是否可以采用分段存储的方法:对灰度值较小的段的像素采用比较少的位数,比如2位;对灰度值较大的段的像素采用较多的位数,比如8位,这样就可能减少空间的占用.这就是变位压缩技术的基本想法.这种技术节省了空间,但在读取图像时带来了新的问题.在每个像素8位的存储方法中,读取图像时每8位就是一个像素的灰度值,不会出错.但是对于分段压缩的图像,看起来就是一个长长的0-1序列.当读取这个序列时,怎么知道每段的划分位置及每段像素占用的二进制位数呢?这里需要对段的划分和段中像素使用的二进制位数(要求同一段内不同像素用的存储位数都一样)给出明确的信息.为此,我们对每个段给出两个整数值,一个表示该段含有的像素个数,一个表示每个像素所占用的二进制位数.
比如第i段,有l[i]个像素,每个像素用b[i]位.由于某些技术要求,规定每段像素总数不超过256,即l[i]≤256.于是可以用8位来表示l[i](8位二进制数恰好有256个值).此外,由于每个灰度值在0~255之间,表达每个灰度值所用二进制数的位数b[i]不超过8,于是记录b[i]还需要3个二进制位.对每段来说,这额外的11位作为段头信息.从直觉上来说,分段越多,每段内部像素所占用的位数会减少,但过多的段头会消耗较多的二进制位.相反,分段越少,段内像素的空间消耗会增加,但是段头消耗少.

总结:

  • 基本思路:对这样的图片是否可以采用分段存储的方法:对灰度值较小的段的像素采用比较少的位数,比如2位;对灰度值较大的段的像素采用较多的位数,比如8位,这样就可能减少空间的占用.这就是变位压缩技术的基本想法

  • 具体实现:对每个段给出两个整数值,一个表示该段含有的像素个数,一个表示每个像素所占用的二进制位数.比如第i段,有l[i]个像素,每个像素用b[i]位.

  • 特点:分段越多,每段内部像素所占用的位数会减少,但过多的段头会消耗较多的二进制位.相反,分段越少,段内像素的空间消耗会增加,但是段头消耗少.

举例

请看下面的例子.设输入的灰度值序列是:

P =<10,12,15,255,1,2,1,1,2,2,1,1>

分法1 S1= <10,12,15>,S2 =<255>,S3=<1,2,1,1,2,2,1,1>

分法2 S1=<10,12,15,255,1,2,1,1,2,2,1,1>

分法3 S1=<10>,S2=<12>,S3=<15>,S4=<255>,S5=<1>,S6=<2>,S7=<1>,S8=<1>,S9=<2>,S10=<2>,S11=<1>,S12=<1>

分法1有3段,第1段3个像素,每个像素用4位;第2段1个像素,每个像素用8位;第3段8个像素,每个像素用2位;加上3个段头,每个段头11位,总计位数是:(一个像素值取值范围0-255,最多用8位二进制数可以表示)
4×3+8×1+2×8+3×11=69

分法2有1段,12个像素,每个像素用8位,段头11位,总计位数是:
8×12+11=107

分法3有12段,前3段的像素用4位,第4段像素用8位,后面有5段像素用1位,3段像素用2位,还有12个段头,每个11位,总计位数是:
4×3+8×1+1×5+2×3+11×12=163

看起来分法1占用的位数最少.我们的问题是寻找存储位数最少的分段方法.

动态规划解决问题

问题一:

子问题的划分边界问题: 设像素序列x1,x2,x3,。先把它分为两段,尾段和前段。我们假设尾端是没有分割的。并且前段是已经被分割成了最优解。则我们只需要遍历尾段的长度,就可以得到整个序列的最优解。也就是

假设最后一段只有一个元素x3,用x3的长度+一个段头+min(x1,x2)

假设尾段(X2,x3),加上min(x1);

这两个结果比较,就可以拿到最小值

而min(x1,x2)就是子问题

所以递推公式是

dp[i] = dp[i - j] + j x log(max(Pi-j+1,…,Pi)) + 11

log2max(Pi-j+1,…,Pi)是在不分割的情况下,存储序列所需要的最大值。

动态规划五部曲:

  • 确定dp数组(dp table)以及下标的含义 :d[i]=j,表示前i个像素值存储所需要的最小空间是j
  • 确定递推公式 :dp[i] = dp[i - j] + j x log(max(Pi-j+1,…,Pi)) + 11
  • dp数组如何初始化:s[0]=0
  • 确定遍历顺序:从前向后遍历
  • 举例推导dp数组

代码:

使用10,12,15,255,1,2序列测试

输出结果:57

    /**
     *
     * @param dots:二进制序列
     * @return
     */
    public static int optimalBits(int[] dots){
        int n= dots.length;
        int[] s=new int[n+1];
        s[0]=0;
        for(int i=1;i<=n;i++){
            s[i] = s[i-1]+minBit(dots[i-1])+11;
            for(int j=1;j<=i;j++){
                //本次划分使用的内存值
               int Lmin=s[i-j]+j*(minBit(maxNumber(dots,i-j+1,i)))+11;
               if(Lmin<s[i]){
                   s[i]=Lmin;
               }
            }
        }
        //返回s数组最后一个值
        return s[s.length-1];
    }
    private static int maxNumber(int[] dots, int start, int end){
        int[] copy =  Arrays.copyOfRange(dots,start -1,end);
        Arrays.sort(copy);
        return copy[copy.length -1];
    }
    /**
     * 求解数字number所需要的最小二进制位数
     * @param number
     * @return
     */
    private static int minBit(int number){
        int min = 0;
        //最多8位
        for(int i = 1; i <= 8; i++){
            if(Math.pow(2,i-1) - 1 <= number && Math.pow(2,i) - 1 >= number){
                min = i;
                break;
            }
        }
        return min;
    }
    public static void main(String[] args){
        int[] text=new int[]{10,12,15,255,1,2};
        System.out.println(optimalBits(text));
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值