1、爬楼梯
题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
4. 1 阶 + 1 阶 + 1 阶
5. 1 阶 + 2 阶
6. 2 阶 + 1 阶
提示:
1 <= n <= 45
代码
class Solution {
public:
int climbStairs(int n) {
if(n<=2) return n;
int dp[n+1];
dp[1]=1,dp[2]=2;
for(int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
总结
刚开始做时,思路不太清晰,但是当把前几个列出来时,就会发现到某一个台阶(n>2)会有两种方法:其一,在下面一层爬一个台阶上来;其二,在下面两层爬两个台阶上来。这样递推公式就写出来了^^
链接: 70.爬楼梯
2、使用最小花费爬楼梯
题目描述
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n=cost.size();
vector<int> dp(n+1);
dp[0]=cost[0];
dp[1]=cost[1];
for(int i=2;i<=n;i++){
dp[i]=min(dp[i-1],dp[i-2]);
if(i<n) dp[i]+=cost[i];
}
return dp[n];
}
};
改进:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n=cost.size();
vector<int> dp(n+1);
dp[0]=0;
dp[1]=0;
for(int i=2;i<=n;i++){
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
//if(i<n) dp[i]+=cost[i];
}
return dp[n];
}
};
总结
做本题时,学到了vector.size()的用法,
链接: 746. 使用最小花费爬楼梯