设有x个房间,则4x+20=8x-4,得x等于6
带入公式任一边,得出人数为44
、第一次就拿出了那个不同的球,但是不知道是两个中的哪个
2、第二次拿出的两个球肯定是一样的
3、从第一次拿出的两个球中随便拿一个(比如说a球)跟第二次拿出的两个球中随便一个进行比较,如果不同,则a就是想要的那个球
1^2+1=2
2^2-1=3
3^2+1=10
4^2-1=15
5^2+1+26
6^2-1=35
4*4*4
1-3^3=-26
2-2^3=-6
3-1^3=1
4-0^3=4
5-(-1)^3=6
6-(-2)^3=14
枢纽一指重要的部分,事物相互联系的中心环节;二也指重要的地点或事物关键之处;
领导是在一定条件下,指引和影响个人或组织,实现某种目标的行动过程。
中介指在不同事物或同一事物内部对立两极之间起居间联系作用的环节。
题目说办公室是管理工作的中心 。所以说应该选枢纽
5x2+0=10;
10x2+1=21;
21x2+2=44;
44x2+3=91;
91x2+4=186;
设房间数为x,总人数为y
3x+2=y
0<y-4(x-1)<4
得2<x<6
最大的x为5
男生分为①只参加文科,②只参加理科,③既参加文科又参加理科。 其中,给了参加文科和参加理科的男生都是120人,即①+③=②+③=120人。 又给了同时参加文科和理科的男生一共75人,即③=75人。 得①=②=45人,③=75人; 男生一共①+②+③=165人; 女生一共280-165=115人。!!!! 同理女生分为A只参加文科,B只参加理科,C既参加文科又参加理科。 其中,给了参加文科和参加理科的女生都是80人,即A+C=B+C=80人。 且女生一共A+B+C=115人,结合上式得: A=B=35人,C=45人。 得只参加文科而不参加理科的女生即A=35人。
分奇数项和偶数项
奇数项:3和11和71规律是(3+1)×3=11+1,(11+1)×6=71+1
偶数项:8和20和168规律是(2×8)+4=20,(20×8)+8=168
整数部分分别是1、2、3、4、5的3次方,小数部分分别是4、5、6、7、8的平方
后一个数等于前一个数的两倍+2
如题5,6,6/5,1/5,(),...
观察到规律:5(第一项)*6/5(第三项)=6(第二项);6(第二项)*1/5(第四项)=6/5(第三项)。
故大胆猜测除第一项外其数值为相邻两数得乘积。
故6/5(第三项)*X(第五项)=1/5(第四项),故X=1/6,即 B项。
设2000年税费为1,则2001为0.97,2002为0.97*0.96,2003为0.97*0.96*0.95,为0.88464. 答案为1-0.88464,选A.
3/2X+6=3/4X 求出72
20/9 ➗4/3 = 5/3
7/9 ➗4/9 = 7/4
1/4 ➗? = 9/5
20/9=20/9
4/3=24/18,
7/9=28/36,
4/9=32/72,
1/4=36/144,
40/288=5/36
0分:26,
5分:23,
10分:20,
15分:17,
20分:14,
25分:11
斐波那契数列问题。动态转移方程式:F(n)=F(n-1)+F(n-2),因为第n层可以由第n-1层或第n-2层爬到,所以一直递推即可。
n=1,F(1)=1,
n=2,F(2)=2,
n=3,F(3)=F(2)+F(1)=3,
n=4,F(4)=F(3)+F(2)=5,
n=5,F(5)=F(4)+F(3)=8,
n=6,F(6)=F(5)+F(4)=13,
n=7,F(7)=F(6)+F(5)=21,
n=8,F(8)=F(7)+F(6)=34.
n=9,F(9)=F(8)+F(7)=55.
n=10,F(10)=F(9)+F(8)=89.
2的四次方大于15
3X3+1=10
4X4+1=17
5X5+1=26
6X6+1=37
7X7+1=50
四个连续自然数包括两个奇数两个偶数,他们的和可以被2整除,但不可以被4整除,只有26符合
第一个人握手n-1次,第二人握手n-2次,以此类推到最后一个人是n-n即0次,所以推出总的握手次数公式为
(n-1)+(n-2)+(n-3)+...+(n-n)
设出生年份为197x年,今年为y年,则该人的年纪为(y-1970-x)岁。从今年起自己的年龄均与当年年份的各数字之和相等,所以y-1970-x=1+9+7+x,即y-2x=1987。若x=0,则y=1987,第二年为1988年,该人的年纪为18≠1+9+8+8。若x=1,则y=1989,第二年为1990年,该人的年纪为19=1+9+9+0,符合,且之后一直符合。所以生于1971年。1971除以9能除尽,所以只需在1971加上9的整数倍即可。1971+4*9=2007
设甲走ACB方向,乙走AB方向。从C点向下作垂线,可知左右两侧均为直角三角形,且三条边之比为1:√3:2(短直角边与斜边之比为1:2)。又因为甲的速度是乙的二倍,可知甲乙的距离始终是垂直的,即为较长的直角边,所以距离的方程为y =√3x,至C点时距离最大,CB段同理,B点相遇,距离为零。以下同上……
10甲+10乙=12乙+12丙=4甲+4丙+12乙 乙=2甲=4丙 原式=15乙
13+1=14
14+1+3^0=16
16+1+3^0+3^1=21
21+1+3^0+3^1+3^2=35
35+1+3^0+3^1+3^2+3^3=76
吃B一个,吃C两个这样每人平均吃三个,A吃B和C的比例是1:2,所以给的元宝的个数也是1:2,所以选C.
千位数有四中可能,分别是2,3,4,5
①当千位数为2时,百位数和十位数只能分别为1,0,个位数有三种可能(1×3),所以这种情况为三种可能。
②当千位数为3时,百位数只能为2或1,当百位数为1时,十位数只能为0,此时个位数有三种可能;当百位数为2时十位数只能为1或0,此时有6种可能(2+1)×3,所以总共9种可能。
③当千位数为4时,同理(3+2+1)×3有18种可能。
④当千位数为5时,同理(4+3+2+1)×3有30种可能。
综上所述,3+9+18+30=60