1. 简介
深度伪造是指利用人工智能和机器学习技术生成的合成媒体 [ 1 ]。近年来,人工智能和机器学习技术已发展成为可用于恶意活动的强大工具 [ 2 ]。这些恶意活动可能是冒充他人或散布虚假信息。早期的讨论主要集中在其在政治或名人文化中的潜在滥用。然而,如今人们越来越意识到企业环境也面临着高风险。深度伪造驱动的社会工程学带来了重大挑战,因为它可以创建超逼真的伪造内容,例如冒充高管或利益相关者的音频或视频,从而绕过传统的安全措施 [ 3 ]。
学术文献和行业实践中都存在一个关键的差距:对企业环境中大规模深度伪造驱动的社会工程学关注不足 [ 4 ]。尽管已有若干研究总体上探讨了深度伪造的生成和检测 [ 5、6 ],但只有少数研究调查了这些合成媒体威胁如何利用对现代企业具有重要意义的结构和沟通渠道。如表 1所示,这一比较概述揭示了当前网络安全实践中的关键差距,这些差距凸显了进行更多研究的必要性,以提高组织对深度伪造驱动的社会工程学威胁的防范能力。现有的企业防御协议主要面向经典网络钓鱼或通用恶意软件,往往无法预测深度伪造攻击的复杂性和令人信服的现实性 [ 7 ]。
表 1. 深度伪造检测和缓解相关工作的比较(讨论: √;从未提及: -;部分提及: *)。
表 1. 深度伪造检测和缓解相关工作的比较(讨论: √;从未提及: -;部分提及: *)。
作者 | 主要贡献 | 威胁形势 | 检测技术 | 组织影响 | 人工智能和机器学习工具 | 研究挑战 |
---|---|---|---|---|---|---|
[ 5 ] | 对深度伪造的创建和检测进行了广泛的调查,重点关注生成模型和人工智能驱动的策略。 | √ | √ | – | √ | 未涵盖组织影响 |
[ 8 ] | 介绍了深度伪造对人脸识别系统的威胁;强调了检测的重要性,但较少关注企业级缓解措施。 | – | √ | – | – | 未涵盖威胁形势、组织影响以及 AI 和 ML 工具。 |
[ 9 ] | 讨论了深度伪造的当前和未来趋势,并部分提及了组织安全措施。 | √ | √ | * | √ | 简要提到了组织影响。 |
[ 6 ] | 分析人脸操纵技术和基于机器学习的检测方法;专注于图像/视频认证测试。 | √ | √ | – | √ | 未涵盖组织影响。 |
[ 10 ] | 回顾深度伪造的合成和检测方法;重点关注最先进的生成对抗网络和基于人工智能的防御。 | √ | √ | – | √ | 未涵盖组织影响。 |
[ 1 ] | 通过强调深度伪造对通信和军事行动的潜在干扰,分析深度伪造对国家安全的风险,同时提出协调的检测和缓解策略。 | √ | √ | √ | * | 部分提到了 AI 和 ML 工具。 |
[ 7 ] | 对深度伪造的网络攻击进行分析,重点实施有针对性的安全控制,以减轻与数字欺骗相关的风险。 | √ | √ | √ | – | 不讨论 AI/ML 工具。 |
[ 11 ] | 回顾深度伪造检测方法,重点介绍先进的深度学习技术、评估基准和新出现的取证挑战。 | – | √ | – | * | 未包括威胁形势和组织影响,仅部分讨论了 AI/ML 工具。 |
[ 12 ] | 调查深度伪造的合成和检测技术,将先进的生成模型与强大的机器学习相结合,以应对新兴的数字媒体取证挑战。 | √ | √ | – | * | 未涉及组织影响;部分讨论了 AI/ML 工具。 |
[ 13 ] | 引入一种深度伪造检测框架,该框架使用时空集成学习和残差网络来捕捉细微的操纵痕迹。 | √ | √ | * | √ | 部分讨论了组织影响。 |
[ 14 ] | 审查社会、法律和安全挑战,同时提出公众信任和民主进程的多学科框架。 | √ | √ | √ | – | 未涵盖 AI/ML 工具。 |
这项工作 | 本文讨论了企业对供应商安全的依赖、深度伪造特定威胁、实时检测以及零信任方法(PREDICT 模型)。 | √ | √ | √ | √ | 本研究涵盖了深度伪造驱动的威胁态势、检测技术以及组织防御策略。研究内容涵盖基于人工智能的深度伪造检测、实时媒体分析、安全验证协议以及员工培训。 |
为了解决这些问题,本文旨在弥合深度伪造的理论能力与现代组织所采用的有限且往往被动的应对措施之间的研究差距。本研究检验了当前检测方法的有效性,并将其与实际的防御策略相结合。通过这种方式,它将讨论扩展到深度伪造的抽象危害之外,旨在为企业利益相关者提供切实可行的见解。
1.1. 问题陈述
深度伪造技术的快速发展,为企业界的威胁格局带来了新的、潜在的严重威胁。虽然传统的网络安全措施旨在应对常规威胁,但在应对深度伪造驱动的社会工程攻击的复杂性和不断演变性方面,它们仍然存在不足的风险。尽管媒体和学术界对此的关注度日益增加,但由于缺乏专业的检测工具,并且过度依赖通用的安全实践,许多组织仍然措手不及。
本研究旨在弥合这一关键差距,具体方法如下:审视企业防御深度伪造攻击的现状,识别现有基础设施中的具体漏洞,并提出一个旨在整合高级检测、强大的事件响应和持续改进实践的综合框架 (PREDICT)。通过这种方式,我们力求更清晰地定义问题,同时提供切实可行的见解,以降低相关风险。
1.2. 目的和目标
这篇融合技术与调查的论文旨在深入探讨深度伪造社交工程对企业构成的新兴威胁。此外,它还提供了一个框架,帮助企业有效应对这些新兴风险。本综述旨在帮助不同行业的网络安全专业人士弥合深度伪造技术的快速发展与保护企业资产所需的相应防御策略之间的差距。本文的具体目标如下:
- 识别深度伪造威胁;
- 评估检测技术;
- 制定防御策略;
- 创建一个综合模型;
- 提供可操作的指导方针;
- 为企业安全态势做出贡献。
为了实现这些目标,本文旨在为各组织提供必要的知识和工具,以规避和缓解深度伪造威胁。希望这将有助于他们在日益数字化和互联互通的世界中提升保护敏感信息、维护信任和确保运营连续性的能力。
1.3. 研究问题和贡献
-
深度伪造驱动的社会工程攻击对企业环境构成哪些威胁?
-
目前的检测技术有哪些?
-
组织使用或推荐哪些防御策略?
-
组织如何评估其准备情况并改进其政策框架?
1.4. 本文概要
第一节介绍了深度伪造技术,以及本研究的问题陈述、目标和研究问题。第四节详细介绍了与网络安全专业人员进行的半结构化访谈方法,包括参与者招募、数据收集和主题分析。第五节回顾了企业面临的深度伪造漏洞、社会工程学策略、案例研究及其对安全、声誉和财务的影响。第六节评估了当前的深度伪造检测方法,包括人工智能工具、图像/音频分析和一般网络安全措施,并指出了它们的局限性。