1.什么是递归?
递归就是一个函数在它的函数体内调用它自身。执行递归函数将反复调用其自身,每调用一次就进入新的一层。递归函数必须有结束条件。
当函数在一直递推,直到遇到墙后返回,这个墙就是结束条件。所以递归要有两个要素,结束条件与递推关系
注:递归的时候,每次调用一个函数,计算机都会为这个函数分配新的空间,这就是说,当被调函数返回的时候,调用函数中的变量依然会保持原先的值,否则也不可能实现反向输出。
2.例题:
2.1打印整数每一位
接受一个整型值(无符号),按照顺序打印它的每一位。
例如:
输入:123,输出 1 2 3
**分析:**打印一个整数的每一位,
#include <stdio.h>
void print(int n)
{
if (n > 9)
{
print(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int num = 123;
print(num);
return 0;
}
递归就是这样,从哪里调用,就回到哪里去,然后继续执行返回处下面的语句。
2.2斐波那契数列
斐波那契数列指的是这样一个数列:
1 1 2 3 5 8 13 21 34 55......
这个数列从第三项开始,每一项都等于前两项之和。
分析容易得到:
n!=12345…(n-1)n
(n-1)!=12345…(n-1)
所以我们知道:n!=n(n-1)!
我们便得到函数f(x)的表达式:
代码如下:
#include <stdio.h>
int fib(int n)
{
if (n <= 1)
return 1;
else
return n * fib(n - 1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = fib(n);
printf("%d\n", ret);
return 0;
}
递归如下图所示开辟空间:
这样就解决了这个题目,但我们发现,如果输入的的数字很大,例如50,程序执行会需要很长时间,如果输入更大的数,像10000,程序直接会报错而崩溃。
为什么呢?
我们发现 fib 函数在调用的过程中很多计算其实在一直重复。在调试fib函数的时候,如果你的参数比较大,那就会报错:
stackoverflow(栈溢出)这样的信息。系统分配给程序的栈空间是有限的,但是如果出现了死循环,或者(死递归),这样有可能导致一直开辟栈空间,最终产生栈空间耗尽的情况,这样的现象我们称为栈溢出。每一次调用函数都会在内存的栈区申请一块空间,当我们一直不停地开辟空间,总有一天,栈空间的内存耗光了,没有空间可以开辟了这个时候就会出现栈溢出(stackoverflow)的问题。
总之许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。
当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开
销。