01背包模板

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int v[10010],w[10010];
int f[10010];
int main()
{
	cin>>m>>n;
	for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
	
	for(int i=1;i<=n;i++)
		for(int j=m;j>=v[i];j--)
			f[j] = max(f[j],f[j-v[i]]+w[i]);
	
	cout<<f[m];
	return 0;
} 

这里顺带说一下优化

首先我们要明白为什么可以从一维变成二维呢?、

是因为我们每次在进行状态转移的时候只会用到上次的状态,体现在网格图中就是下一行的信息仅仅由上一行继承而来

所以我们很容易想到若是每行信息我们都要记录,那是会浪费很多空间的

所以基于实用和偷懒主义,我们就保存一行信息,也就是把二维信息压成一维来记录

但是我们还要考虑更新的顺序,基于01背包的特性——同一件物品是不能被使用超过一次的

所以我们更新信息的时候是不能从小体积开始更新的,因为这样很可能导致后面的状态在继承前面状态的之前这个物品就已经被使用了

所以我们选择把体积从大到小遍历——

这样后面的状态即使是用到前面的状态,也能保证当前这件物品最多被使用一次

要加油哇!!!

### 回答1: C 01 背包问题是一种经典的动态规划问题。它的基本思想是:给定一个容量为 C 的背包和 N 个物品,每个物品都有自己的体积和价值,求在满足背包容量限制的前提下,能够装入背包中的物品的最大价值总和。 解决该问题的常用模板为: 1. 定义状态:定义 dp[i][j] 表示考虑前 i 个物品,容量为 j 的背包能够装入物品的最大价值总和。 2. 状态计算:根据背包的容量限制和物品的体积和价值,使用递推公式进行状态转移。 - dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + w[i]) 其中,v[i] 和 w[i] 分别表示第 i 个物品的体积和价值。 3. 边界:考虑边界条件,dp[0][j]=0,dp[i][0]=0。 4. 计算结果:遍历整个 dp 数组,找到一个使得 dp[N][j] 最大的 j 值,即为答案。 ### 回答2: 01背包问题是指有一个背包,最多能装载一定重量的物品,现有一组物品,其重量和价值分别为wi和vi,求在背包容量限制下,如何选择物品,使得背包中物品的总价值最大化。 解决01背包问题的核心思想是动态规划。创建一个二维数组dp[n+1][W+1],其中n为物品的个数,W为背包的重量限制。dp[i][j]表示在前i个物品中选择,在背包容量为j时的最大总价值。 初始化dp数组的第一行和第一列为0,表示背包容量为0或没有物品可选时,总价值都为0。接下来,开始进行状态转移。 对于每一个物品i,可以选择将其放入背包中或不放入。如果将物品i放入背包中,则背包的容量会减少wi,总价值会增加vi。如果不放入物品i,则背包的容量和总价值都不变。因此,在计算dp[i][j]时,可以根据以下条件进行选择: - 如果j < wi,则无法将物品i放入背包中,此时dp[i][j] = dp[i-1][j]; - 如果j >= wi,则可以选择将物品i放入背包中,即dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)。 最终,dp[n][W]即为问题的解,表示在前n个物品中选择,在背包容量为W时的最大总价值。 通过动态规划算法,可以在时间复杂度为O(nW)的情况下解决01背包问题。这种算法适用于物品数量较小且背包容量较小的情况,效率较高。 ### 回答3: 01背包问题是一个经典的动态规划问题,用来求解在背包容量有限的情况下,如何选择物品放入背包使得总价值最大化。 问题可以描述为:给定n个物品,每个物品有一个重量和一个价值,以及一个容量为W的背包。要求在不超过背包容量的情况下,选取若干个物品放入背包,使得被选取的物品的总价值最大。 定义一个二维数组dp[n+1][W+1],其中dp[i][j]表示前i个物品中,背包容量为j时的最大总价值。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的总价值为0;和dp[i][0] = 0,表示背包容量为0时,无法选择任何物品,总价值也为0。 对于每一个物品i,有两种选择:放入背包或不放入背包。如果放入背包,则总价值为dp[i-1][j-w[i]] + v[i],其中w[i]是第i个物品的重量,v[i]是第i个物品的价值。如果不放入背包,则总价值为dp[i-1][j]。根据这两种选择,可以得到状态转移方程: dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j]) 最后,dp[n][W]即为问题的解,即前n个物品,在容量为W的背包中,所能达到的最大总价值。 综上所述,C 01背包问题模板的实现可以通过动态规划思想,并利用一个二维数组来保存状态值,最后输出dp[n][W]作为问题的解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值