目录
- kafka是什么
- kafka核心组件
- kafka应用场景
- kafka解决的难题
- kafka的底层原理
- kafka的消费者是pull还是push模式,这种模式的好处?
- Zookeeper对于Kafka的作用
- Kafka维护消息状态的跟踪方法
- Kafka判断节点活着的两个条件
- Kafka中ack的三种机制
- kafka是怎么保证消息不被重复消费的
- 分布式情况下,如何保证消息的顺序消费
- kafka如何不消费重复数据
- 讲一下kafka集群的组成
- partition的数据文件(offffset,MessageSize,data)
- kafka如何实现数据的高效读取?(顺序读写、分段命令、二分查找)
- Kafka 消费者端的Rebalance 操作什么时候发生
- Kafka中的ISR(InSyncRepli)、OSR(OutSyncRepli)、AR(AllRepli)代表什么
- Kafka中的HW、LEO等分别代表什么
- Kafka的那些设计让它有如此高的性能?
- Kafka为什么不支持读写分离
- 分区Leader选举策略有几种
- 请谈一谈Kafka数据一致性原理
- Kafka缺点
- kafka保证消息被顺利消费
- 知识点
- 字节跳动
kafka是什么
Kafka 是一个开源的分布式流处理平台,由 Apache 软件基金会开发和维护。它主要用于构建实时数据流处理应用程序,以满足高吞吐量、低延迟和高可扩展性的需求。Kafka 可以处理数百亿次的事件(如消息、日志、指标等)并将其传输到多个订阅者。特点是高吞吐量、持久性、分布式
kafka核心组件
-
Producer:生产者是负责将数据(如消息、日志、指标等)发送到 Kafka 集群的客户端应用。生产者将数据发送到一个或多个 Kafka 主题(Topic)
-
Topic:主题是 Kafka 中数据的逻辑分类。数据的生产者将消息发送到特定的主题,而消费者订阅这些主题以接收数据
-
Partition:分区是 Kafka 主题的物理组织方式。一个主题可以拆分为多个分区,每个分区可以独立存储和处理数据。分区允许 Kafka 在多个服务器上并行处理数据,从而实现高可扩展性
-
Broker:代理是 Kafka 集群中的单个服务器。一个 Kafka 集群可以包含多个代理,这些代理共同协作以存储和处理数据。代理负责接收生产者发送的数据和向消费者提供数据
-
Consumer:消费者是从 Kafka 集群订阅和处理数据的客户端应用。消费者可以订阅一个或多个主题,并从中获取数据进行处理
-
Zookeeper:需要zk来做分布式协调
kafka应用场景
Kafka 是一个高性能、可扩展的分布式流处理平台,它在许多不同的应用场景中都有广泛的用途。以下是一些 Kafka 的典型用途:
- 日志聚合:Kafka 可以用于收集和传输大量的日志数据,以便集中存储和处理。这有助于实现对日志数据的实时监控、分析和报告。
- 数据流处理:Kafka 可以用于构建实时数据流处理管道,以便对数据进行过滤、转换、聚合和分析等操作。这对于实时数据监控、实时报表生成和实时推荐等应用场景非常有用。
- 消息队列:Kafka 可以作为一个高性能、可扩展的消息队列系统,用于在分布式系统中传输数据。这有助于实现系统的解耦,从而提高系统的可维护性和可扩展性。
- 事件驱动架构:Kafka 可以用于构建事件驱动的微服务架构,以提高系统的解耦和可扩展性。在这种架构中,各个微服务之间通过 Kafka 传递事件,从而实现异步通信和松耦合。
- 数据同步:Kafka 可以用于实现跨系统、跨数据库的数据同步。通过将数据变更作为事件发送到 Kafka,其他系统和数据库可以订阅这些事件,并根据需要实时更新自己的数据。
- 大数据处理:Kafka 可以作为大数据处理平台(如 Hadoop、Spark 等)的数据源,提供实时或批量的数据输入。这有助于实现对大规模数据的实时或离线分析、挖掘和机器学习。
- 实时监控和报警:Kafka 可以用于实时监控系统状态、性能指标和业务指标。通过实时分析 Kafka 中的数据,可以实现对异常情况的实时检测和报警。
- 分布式事务:Kafka 可以用于支持分布式事务,在多个服务或组件之间进行协调和状态同步。通过 Kafka 传递事务状态和命令,可以实现对分布式事务的管理和控制。
这些仅仅是 Kafka 的部分用途,实际上 Kafka 在不同行业和场景下还有更多的应用。总之,Kafka 作为一个高性能、可扩展的分布式流处理平台,具有广泛的应用价值。
kafka解决的难题
Kafka 的设计初衷是为了解决大规模分布式系统中的数据流处理问题。它主要解决以下几个方面的问题:
-
高吞吐量和低延迟数据传输:Kafka 能够在分布式环境中高效地处理大量的数据流,以满足实时数据处理和传输的需求。
-
可扩展性:Kafka 具有良好的可扩展性,可以通过添加更多的代理(Broker)节点来扩展集群,以支持更高的吞吐量和更大的数据量。这对于大型分布式系统和云计算环境非常重要。
-
数据持久性:Kafka 可以将数据持久化到磁盘,保证数据不会丢失。这对于关键业务数据和日志数据的处理非常重要。
-
分布式和高可用:Kafka 是一个分布式系统,它可以在多个节点上运行以实现负载均衡和容错。当某个节点发生故障时,Kafka 集群仍然可以继续提供服务。
-
消息订阅和消费:Kafka 提供了灵活的消息订阅和消费机制,允许多个消费者订阅同一个主题(Topic)并并行处理数据。这有助于实现数据的实时处理和分析。
-
解耦生产者和消费者:Kafka 可以作为一个中间数据存储层,解耦数据的生产者和消费者。这有助于提高系统的可维护性和可扩展性,同时减轻对单个组件的性能压力。
-
数据同步和集成:Kafka 可以作为一个集成平台,用于实现不同系统和数据库之间的数据同步。这有助于构建统一的数据处理和分析平台,降低数据孤岛的影响。
-
跨平台和多语言支持:Kafka 提供了多种编程语言的客户端库,以支持不同平台和语言的应用程序。这有助于实现跨平台和跨语言的数据交互和集成。
总之,Kafka 主要解决了分布式系统中的数据流处理、传输、存储和集成等问题,为构建高性能、实时和可扩展的数据处理系统提供了基础设施。
kafka的底层原理
Kafka 的底层原理主要包括以下几个方面:
数据模型
Kafka 使用发布-订阅模型,数据以消息(Message)的形式被生产者(Producer)发布到主题(Topic)中。消费者(Consumer)可以订阅一个或多个主题以接收和处理消息。主题被划分为多个分区(Partition),每个分区中的消息按照先进先出(FIFO)的顺序存储并具有唯一的偏移量(Offset)。
数据持久化
Kafka 将消息持久化到磁盘,以保证数据不会丢失。每个分区的数据被存储为一个单独的日志文件,文件按照大小或时间进行滚动。Kafka 使用顺序写入的方式来优化磁盘 I/O 性能。
分布式和副本
Kafka 是一个分布式系统,由多个代理(Broker)组成。每个分区可以有多个副本(Replica),分布在不同的代理上。其中一个副本被选为领导者(Leader)负责处理消息的读写,其他副本作为追随者(Follower)同步领导者的数据。当领导者发生故障时,会自动选举一个新的领导者。
生产者
生产者负责将消息发布到 Kafka 主题。生产者会将消息发送到主题的一个分区,分区的选择可以基于消息的 key 进行哈希分配,也可以使用自定义的分区策略。生产者可以配置消息的确认级别(acks)以控制消息的可靠性和性能。
消费者和消费者组
消费者负责从 Kafka 主题中读取和处理消息。消费者可以组成消费者组(Consumer Group),组内的消费者协同处理同一个主题的消息,以实现负载均衡和并行处理。消费者使用偏移量(Offset)来记录每个分区已消费的消息位置,偏移量可以存储在 Kafka 或外部系统中。
数据同步
Kafka 使用复制协议(Replication Protocol)来同步分区的副本数据。领导者将收到的消息写入本地日志后,会将消息发送给追随者。追随者接收到消息后,也将消息写入本地日志并发送 ACK 给领导者。领导者收到所有追随者的 ACK 后,认为消息已经被复制成功。
容错和高可用
Kafka 通过领导者选举(Leader Election)机制来实现容错和高可用。当一个分区的领导者发生故障时,Kafka 会自动从追随者中选举一个新的领导者。选举过程中,该分区的读写请求会暂时被阻塞,但其他分区仍然可以正常处理请求。
应用接口
Kafka 提供了生产者和消费者的客户端库,支持多种编程语言。用户可以通过这些客户端库来实现消息的发布和订阅,与 Kafka 集群进行交互。
通过这些底层原理,Kafka 实现了高性能、分布式、持久化、可扩展和高可用的数据流处理平台。
kafka的消费者是pull还是push模式,这种模式的好处?
Kafka 的消费者使用 pull(拉)模式来获取数据。这意味着消费者主动从 Kafka broker 请求数据,而不是等待 broker 将数据推送到消费者。这种 pull 模式的好处有:
-
流控制:消费者可以根据自己的处理能力来控制拉取数据的速率,避免因为处理速度跟不上消息推送速度而导致的积压问题。这有助于维护消费者的稳定性和可靠性。
-
可扩展性:在 pull 模式下,可以轻松地添加或减少消费者数量,以应对不同的负载需求。当需要更多消费者处理消息时,可以简单地将它们加入消费者组,从而实现水平扩展。
-
高性能:在 pull 模式下,消费者可以批量拉取消息,从而提高处理效率。这有助于提高整体系统的吞吐量和性能。
-
容错性:Kafka 通过分区(Partition)和副本(Replica)来实现高可用和数据冗余。在 pull 模式下,如果某个消费者故障,其他消费者可以继续从故障消费者的当前位置开始拉取消息,从而确保消息的连续性。
-
简化设计:在 pull 模式下,消费者不需要维护一个长连接,而是通过轮询的方式获取数据。这可以简化消费者的设计,减少连接管理的复杂性。
总之,Kafka 中使用 pull 模式的消费者可以提供更好的可扩展性、性能和容错性,有助于构建高效、可靠的分布式消息系统。

本文详细介绍了Kafka这一开源分布式流处理平台。阐述了其核心组件、应用场景、解决的难题及底层原理,包括数据模型、持久化等。还探讨了消费者模式、Zookeeper作用、消息状态跟踪等内容,分析了消息丢失场景及解决办法,介绍了字节跳动相关应用。
最低0.47元/天 解锁文章
2766

被折叠的 条评论
为什么被折叠?



