Kruskal算法

K r u s k a l 算法 \color{red}{\huge{Kruskal算法}} Kruskal算法

功能

K r u s k a l Kruskal Kruskal算法专门用来求一个图的 最小生成树 \color{blue}{最小生成树} 最小生成树。效率非常的好哦!

简介

K r u s k a l Kruskal Kruskal算法又称 加边法 \color{orange}{加边法} 加边法。该算法通过对边权进行排序后,依此加入每条边同时判断生成的图是否连通来进行求解一个图的最小生成树问题。

算法流程

首先默认去除图中所有的边只剩下点,之后一条一条加边试探!! \color{red}{{首先默认去除图中所有的边只剩下点,之后一条一条加边试探!!}} 首先默认去除图中所有的边只剩下点,之后一条一条加边试探!!

①. 将所有的边按照 权重的大小从小到大 \color{blue}{权重的大小从小到大} 权重的大小从小到大进行排序。

for(每条边 a → b (权重w))
{
    if(如果原本a,b两个点不在一个连通分量之中)
    {
        将这条边加入到集合中
        res += 边长
    }
}

r e s res res:最后最小生成树的值。

算法解析

  1. 边权排序: \color{red}{\huge{边权排序:}} 边权排序:
    按照边权从小到大进行排序,每次都加入最小的边进行试探,这样保证求出来的生成树最小( 贪心 \color{blue}{贪心} 贪心)。
  2. 循环: \color{red}{\huge{循环:}} 循环:
    ①.循环遍历的是每个边,但是每次加入边的时候都会判断 a a a b b b是否处于同一连通分量。这样就保证了最多加入 n − 1 n - 1 n1条边,不会有全连通之后还重复加边的情况。
    ②.但是有可能会有加边不够的情况,如果给定的图从一开始就是不连通的,最后加入边的条数一定会小于 n − 1 n-1 n1,因为 n n n个点有 n − 1 n-1 n1边是全连通的最基本条件。
    if(cnt < n - 1) return INF;
  3. 实现使用什么结构 . . . ? \color{red}{\huge{实现使用什么结构...?}} 实现使用什么结构...
    根据 K r u s k a l Kruskal Kruskal算法的要求,每次遍历一个边都需要判断,这个边所连接的两个点是否在同一连通块,换句话说就是判断是不是在同一个集合。并且如果能加入这条边,那么也要能够快速的将两个点并入同一个集合。 纯纯的并查集暗示 ! ! \color{blue}{\huge{纯纯的并查集暗示!!}} 纯纯的并查集暗示!!
    所以使用并查集来进行操作的实现。

完整代码

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010, INF = 0x3f3f3f3f;

int n, m;
int p[N];

struct Edge         //一个结构体,直接封装三个数据,左边的点、右边的点、边的权重
{
    int a, b, w;

    bool operator< (const Edge &W)const     //<号的重载,方便调用sort函数排序
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     //并查集find函数
{
    if (p[x] != x) p[x] = find(p[x])    寻找祖宗节点 + 路径压缩    
    return p[x];
}

int Kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;       //res存储最小生成树值,cnt存储边的数量
    
    for (int i = 0; i < m; i ++ )       //遍历所有的边
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);       //找到a和b的集合号
        if (a != b)             //a和b没有在同一个集合
        {
            p[a] = b;           //a所在集合并入b所在的集合
            res += w;
            cnt ++ ;            //表示加入这条边
        }
    }

    if (cnt < n - 1) return INF;        //初始图非连通情况
    return res;
}

int main()
{
    scanf("%d%d", &n, &m);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }

    int t = Kruskal();

    if (t == INF) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用来求加权连通图的最小生成树(MST)的算法,由Joseph Kruskal在1956年发表。该算法的基本思想是按照边的权值从小到大的顺序选择边,并保证这些边不构成回路。具体做法是首先构造一个只含有n个顶点的森林,然后依据权值从小到大从连通网中选择边加入到森林中,并保证森林中不产生回路,直至森林变成一棵树为止。 使用Kruskal算法求解最小生成树的过程主要有两个关键步骤。首先,需要对图的所有边按照权值大小进行排序。其次,需要判断在将边添加到最小生成树中时是否会形成回路。通过这两个步骤,Kruskal算法能够找到图的最小生成树。 总结来说,Kruskal算法通过按照边的权值从小到大选择边,并保证不形成回路的方式来构建最小生成树。这种算法适用于解决求解加权连通图的最小生成树问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Kruskal算法简易教程(附最全注释代码实现)](https://blog.csdn.net/hzf0701/article/details/107933639)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [克鲁斯卡尔算法Kruskal)详解](https://blog.csdn.net/weixin_45829957/article/details/108001882)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值