- 博客(4)
- 资源 (1)
- 收藏
- 关注
原创 数学建模——微分方程
在前面三章中通过线性规划、整数规划、非线性规划三方面对规划问题有了一个初步的认识。线性规划:https://blog.csdn.net/qq_51564046/article/details/118568020?spm=1001.2014.3001.5501整数规划:https://blog.csdn.net/qq_51564046/article/details/118571195?spm=1001.2014.3001.5501非线性规划:https://blog.csdn.net/qq_51
2021-07-09 21:10:09 1573
原创 数学建模——非线性规划
非线性规划问题:目标函数或约束条件中包含非线性函数。非线性规划目前没有适用于各种问题的一般算法,各个方法有自己特点的适用范围。本文采用Matlab进行非线性规划求解:一元函数的极值求解(fminbnd函数)x=fminbnd(fun,a,b)fun:一元函数。[a,b]为函数自变量的取值范围。求函数fun在区间[a,b]上的极小值点。要求:必须是连续的函数,只能给出局部极小解eg求函数在区间[-10,10]内的极小值点。clear all;f='x^2*sin
2021-07-08 17:22:26 637
原创 数学建模——整数规划
上章回顾:https://blog.csdn.net/qq_51564046/article/details/118568020?spm=1001.2014.3001.5501在上一篇文章中,我们学习到了线性规划。接下来,我们来看另一种规划问题,整数规划。在数学规划中的变量限制为整数时,我们称之为整数规划。若线性规划中的模型,变量限制为整数,我们则称之为整数线性规划。整数规划可以分为两类:(1)纯(完全)整数规划:变量全限制为整数时(2)混合整数规划:变量部分限制为整数(3)0-
2021-07-08 14:56:29 1258
原创 数学建模——线性规划篇
自己的第一篇csdn有点激动[搓手手]知识前瞻:数学建模:数学建模是利用数学方法解决实际问题的一种实践,即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,简而言之,建立数学模型的这个过程就称之为数学建模。numpy库:numpy支持大量的维度数组和矩阵运算,对数组运算提供大量的数学函数库。numpy相比于本身的Python列表更快,更节约内容,可以表示向量和矩阵的多维数组数据结构。numpy对矩阵运算进行了优化,高
2021-07-08 12:03:57 8966
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人