Oxford-102flower花分类数据集,CIFAR10/CIFAR100数据集,
Oxford-102flower
Oxford-102flower是牛津工程大学于2008年发布的用于图像分类的数据集,总共分为102个类,每个类包含40-258张图像,一共8189张图像。
数据下载地址https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
下载图中1.4.5对应的文件,分别为数据的文件,标签的文件和划分的文件。
数据下载解压后显示如下:
数据中个别图像展示:
下载好的图像放在一个jpg文件夹中,该文件夹中包含了所有的图像,但其图像排列顺序是有规律,每一类的图像放在一起,然后再放下一类的所有图像,因此我们可以将数据集划分为训练集、验证集和测试集。
数据集的划分主要依据imagelabels.mat文件和setid.mat文件完成。imagelabels.mat文件主要包换数据的标签信息。
导入头文件:
# encoding:utf-8
import scipy.io
import numpy as np
import os
from PIL import Image
依据imagelabels.mat文件读取图像的标签信息,该文件一共包含8189列,每一个数即代表的该图像所属的类别。在使用时修改imagelabels.mat文件的位置,使程序能够顺利读取。
labels = scipy.io.loadmat('./imagelabels.mat.txt')
labels = np.array(labels['labels'][0]) - 1
print("labels:", labels)
根据setid.mat文件将数据划分为训练集,验证集和测试集。setid.mat文件主要包含每一个类对应的图片信息文件,读取该文件,配合imagelabels.mat文件可实现数据的划分。在使用时修改setid.mat文件的位置,使程序能够顺利读取。
setid = scipy.io.loadmat('./setid.mat.txt')
validation = np.array(setid['valid'][0]) - 1
np.random.shuffle(validation)
train = np.array(setid['trnid'][0]) - 1
np.random.shuffle(train)
test = np.array(setid['tstid'][0]) - 1
np.random.shuffle(test)
将数据存储在fflower_dir中:注意修改图片存储的位置。
flower_dir = list()
for img in os.listdir("./102flowers/jpg"):
flower_dir.append(os.path.join("./102flowers/jpg", img))
flower_dir.sort()
根据setid划分出train并放入train文件夹中:
des_folder_train = "./train" # 该地址可为新建的训练数据集文件夹的相对地址
for tid in train:
# 打开图片并获取标签
img = Image.open(flower_dir[tid])
print(img)
# print(flower_dir[tid])
img = img.resize((256, 256), Image.ANTIALIAS)
lable = labels[tid]
# print(lable)
path = flower_dir[tid]
print("path:", path)
base_path = os.path.basename(path)
print("base_path:", base_path)
classes = "c" + str(lable)
class_path = os.path.join(des_folder_train, classes)
# 判断结果
if not os.path.exists(class_path):
os.makedirs(class_path)
print("class_path:", class_path)
despath = os.path.join(class_path, base_path)
print("despath:", despath)
img.save(despath)
根据setid划分出val并放入val文件夹中:
des_folder_validation = "./val"#该地址为新建的验证数据集文件夹的相对地址
for tid in validation:
img = Image.open(flower_dir[tid])
# print(flower_dir[tid])
img = img.resize((256, 256), Image.ANTIALIAS)
lable = labels[tid]
# print(lable)
path = flower_dir[tid]
print("path:", path)
base_path = os.path.basename(path)
print("base_path:", base_path)
classes = "c" + str(lable)
class_path = os.path.join(des_folder_validation, classes)
# 判断结果
if not os.path.exists(class_path):
os.makedirs(class_path)
print("class_path:", class_path)
despath = os.path.join(class_path, base_path)
print("despath:", despath)
img.save(despath)
根据setid划分出test并放入test文件夹中:
des_folder_test = "./test"#该地址为新建的测试数据集文件夹的绝对地址
for tid in test:
img = Image.open(flower_dir[tid])
# print(flower_dir[tid])
img = img.resize((256, 256), Image.ANTIALIAS)
lable = labels[tid]
# print(lable)
path = flower_dir[tid]
print("path:", path)
base_path = os.path.basename(path)
print("base_path:", base_path)
classes = "c" + str(lable)
class_path = os.path.join(des_folder_test, classes)
# 判断结果
if not os.path.exists(class_path):
os.makedirs(class_path)
print("class_path:", class_path)
despath = os.path.join(class_path, base_path)
print("despath:", despath)
img.save(despath)
划分好的数据集如下所示:
CIFAR10/CIFAR100
CIFAR-10 数据集由 10 个类中的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有50000个训练图像和10000个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次包含 10000 张图像。测试批处理包含来自每个类的 1000 个随机选择的图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次恰好包含来自每个类的5000张图像。
CIFAR-100与CIFAR-10类似,只是它有 100 个类,每个类包含 600 张图像。每类有 500 张训练图像和 100 张测试图像。CIFAR-100 中的 100 个类被分为 20 个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗”标签(它所属的超类)。其标签具有两种,一种是粗粒度标签,一种是细粒度标签,如下:
官方的读取方法:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
- 数据 -- 一个 10000x3072 的 uint8s 的 numpy 数组。阵列的每一行都存储一个 32x32 的彩色图像。前 1024 个条目包含红色通道值,接下来的 1024 个条目包含绿色通道值,最后 1024 个条目包含蓝色通道值。图像按行主顺序存储,因此数组的前 32 个条目是图像第一行的红色通道值。
- 标签 -- 0-9 范围内的 10000 个数字的列表。索引 i 处的数字表示数组数据中第 i个图像的标签。
数据集包含另一个文件,称为批处理.meta。它也包含一个Python字典对象。它具有以下条目:
- label_names -- 一个包含 10 个元素的列表,它为上述 labels 数组中的数字标签提供了有意义的名称。例如,label_names[0] == “飞机”,label_names[1] == “汽车”等。
在实际应用过程中已经封装好的数据,所以我们也可以直接调用封装函数实现数据的读取。
预处理方式:我这里没有做数据增强,也可以添加翻转,旋转,缩放等数据增强操作。
data_transform = {
"train": transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
]),
"val": transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])}
数据读取与载入:
train_dataset=torchvision.datasets.CIFAR100(root='./data/cifar100',train=True,download=True,transform=data_transform['train'])
val_dataset=torchvision.datasets.CIFAR100(root='./data/cifar100',train=False,download=False,transform=data_transform['val'])
train_num=len(train_dataset)
val_num=len(val_dataset)
train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=128,shuffle=True)
val_loader=torch.utils.data.DataLoader(val_dataset,batch_size=128,shuffle=False)
print("using {} images for training, {} images for val.".format(train_num,
val_num))
其中train_loader 和val_loader可以直接送入网络训练。
for step,data in enumerate(train_loader):
img,lable=data
print(len(data))
print(step,lable)
查看其标签:结果如下
2是表示data的长度,data是一个list数据,第一位是图像信息,第二位是标签信息,371是指数据按128的大小分好之后的第371份,由于是标签,所以有128个数字,每个数字表示该batch中对应图像的标签 。可以用这个标签信息去算loss。