pytorch实现深度学习常用图像分类数据集的划分与读取(Oxford-102flower,CIFAR10/CIFAR100)

本文详细介绍了Oxford-102flower花分类数据集的结构、下载及划分方法,包括如何依据imagelabels.mat和setid.mat文件进行训练集、验证集和测试集的划分。同时,文章也概述了CIFAR10和CIFAR100数据集的构成,以及它们在图像识别任务中的应用,包括数据读取、预处理和加载过程。
摘要由CSDN通过智能技术生成

Oxford-102flower花分类数据集,CIFAR10/CIFAR100数据集,

Oxford-102flower

Oxford-102flower是牛津工程大学于2008年发布的用于图像分类的数据集,总共分为102个类,每个类包含40-258张图像,一共8189张图像。

数据下载地址https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

下载图中1.4.5对应的文件,分别为数据的文件,标签的文件和划分的文件。

 数据下载解压后显示如下:

数据中个别图像展示:

 下载好的图像放在一个jpg文件夹中,该文件夹中包含了所有的图像,但其图像排列顺序是有规律,每一类的图像放在一起,然后再放下一类的所有图像,因此我们可以将数据集划分为训练集、验证集和测试集。

 数据集的划分主要依据imagelabels.mat文件和setid.mat文件完成。imagelabels.mat文件主要包换数据的标签信息。

导入头文件:

# encoding:utf-8
import scipy.io
import numpy as np
import os
from PIL import Image

依据imagelabels.mat文件读取图像的标签信息,该文件一共包含8189列,每一个数即代表的该图像所属的类别。在使用时修改imagelabels.mat文件的位置,使程序能够顺利读取。

labels = scipy.io.loadmat('./imagelabels.mat.txt')
labels = np.array(labels['labels'][0]) - 1
print("labels:", labels)

根据setid.mat文件将数据划分为训练集,验证集和测试集。setid.mat文件主要包含每一个类对应的图片信息文件,读取该文件,配合imagelabels.mat文件可实现数据的划分。在使用时修改setid.mat文件的位置,使程序能够顺利读取。

setid = scipy.io.loadmat('./setid.mat.txt')

validation = np.array(setid['valid'][0]) - 1
np.random.shuffle(validation)

train = np.array(setid['trnid'][0]) - 1
np.random.shuffle(train)

test = np.array(setid['tstid'][0]) - 1
np.random.shuffle(test)

将数据存储在fflower_dir中:注意修改图片存储的位置。
 

flower_dir = list()
for img in os.listdir("./102flowers/jpg"):
    flower_dir.append(os.path.join("./102flowers/jpg", img))
flower_dir.sort()

根据setid划分出train并放入train文件夹中:

des_folder_train = "./train"  # 该地址可为新建的训练数据集文件夹的相对地址
for tid in train:
    # 打开图片并获取标签
    img = Image.open(flower_dir[tid])
    print(img)
    # print(flower_dir[tid])
    img = img.resize((256, 256), Image.ANTIALIAS)
    lable = labels[tid]
    # print(lable)
    path = flower_dir[tid]
    print("path:", path)
    base_path = os.path.basename(path)
    print("base_path:", base_path)
    classes = "c" + str(lable)
    class_path = os.path.join(des_folder_train, classes)
    # 判断结果
    if not os.path.exists(class_path):
        os.makedirs(class_path)
    print("class_path:", class_path)
    despath = os.path.join(class_path, base_path)
    print("despath:", despath)
    img.save(despath)

根据setid划分出val并放入val文件夹中:

des_folder_validation = "./val"#该地址为新建的验证数据集文件夹的相对地址

for tid in validation:
    img = Image.open(flower_dir[tid])
    # print(flower_dir[tid])
    img = img.resize((256, 256), Image.ANTIALIAS)
    lable = labels[tid]
    # print(lable)
    path = flower_dir[tid]
    print("path:", path)
    base_path = os.path.basename(path)
    print("base_path:", base_path)
    classes = "c" + str(lable)
    class_path = os.path.join(des_folder_validation, classes)
    # 判断结果
    if not os.path.exists(class_path):
        os.makedirs(class_path)
    print("class_path:", class_path)
    despath = os.path.join(class_path, base_path)
    print("despath:", despath)
    img.save(despath)

根据setid划分出test并放入test文件夹中:

des_folder_test = "./test"#该地址为新建的测试数据集文件夹的绝对地址

for tid in test:
    img = Image.open(flower_dir[tid])
    # print(flower_dir[tid])
    img = img.resize((256, 256), Image.ANTIALIAS)
    lable = labels[tid]
    # print(lable)
    path = flower_dir[tid]
    print("path:", path)
    base_path = os.path.basename(path)
    print("base_path:", base_path)
    classes = "c" + str(lable)
    class_path = os.path.join(des_folder_test, classes)
    # 判断结果
    if not os.path.exists(class_path):
        os.makedirs(class_path)
    print("class_path:", class_path)
    despath = os.path.join(class_path, base_path)
    print("despath:", despath)
    img.save(despath)

划分好的数据集如下所示:

CIFAR10/CIFAR100

CIFAR-10 数据集由 10 个类中的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有50000个训练图像和10000个测试图像。

数据集分为五个训练批次和一个测试批次,每个批次包含 10000 张图像。测试批处理包含来自每个类的 1000 个随机选择的图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次恰好包含来自每个类的5000张图像。

 

 CIFAR-100与CIFAR-10类似,只是它有 100 个类,每个类包含 600 张图像。每类有 500 张训练图像和 100 张测试图像。CIFAR-100 中的 100 个类被分为 20 个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗”标签(它所属的超类)。其标签具有两种,一种是粗粒度标签,一种是细粒度标签,如下:

 官方的读取方法:

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
  • 数据 -- 一个 10000x3072 的 uint8s 的 numpy 数组。阵列的每一行都存储一个 32x32 的彩色图像。前 1024 个条目包含红色通道值,接下来的 1024 个条目包含绿色通道值,最后 1024 个条目包含蓝色通道值。图像按行主顺序存储,因此数组的前 32 个条目是图像第一行的红色通道值。
  • 标签 -- 0-9 范围内的 10000 个数字的列表。索引 i 处的数字表示数组数据中第 i个图像的标签。

数据集包含另一个文件,称为批处理.meta。它也包含一个Python字典对象。它具有以下条目:

  • label_names -- 一个包含 10 个元素的列表,它为上述 labels 数组中的数字标签提供了有意义的名称。例如,label_names[0] == “飞机”,label_names[1] == “汽车”等。

在实际应用过程中已经封装好的数据,所以我们也可以直接调用封装函数实现数据的读取。

预处理方式:我这里没有做数据增强,也可以添加翻转,旋转,缩放等数据增强操作。

data_transform = {
        "train": transforms.Compose([
                                    
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                     ]),
        "val": transforms.Compose([
                                    
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                   ])}

数据读取与载入:

    train_dataset=torchvision.datasets.CIFAR100(root='./data/cifar100',train=True,download=True,transform=data_transform['train'])
    val_dataset=torchvision.datasets.CIFAR100(root='./data/cifar100',train=False,download=False,transform=data_transform['val'])

    train_num=len(train_dataset)
    val_num=len(val_dataset)

    train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=128,shuffle=True)
    val_loader=torch.utils.data.DataLoader(val_dataset,batch_size=128,shuffle=False)

    print("using {} images for training, {} images for val.".format(train_num,
                                                                           val_num))

其中train_loader 和val_loader可以直接送入网络训练。

    for step,data in enumerate(train_loader):
        img,lable=data
        print(len(data))
        print(step,lable)

查看其标签:结果如下

2是表示data的长度,data是一个list数据,第一位是图像信息,第二位是标签信息,371是指数据按128的大小分好之后的第371份,由于是标签,所以有128个数字,每个数字表示该batch中对应图像的标签 。可以用这个标签信息去算loss。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值