AcWing 898. 数字三角形
数字三角形
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输入格式
第一行包含整数 n,表示数字三角形的层数。
接下来 n 行,每行包含若干整数,其中第 i行表示数字三角形第 i层包含的整数。
输出格式
输出一个整数,表示最大的路径数字和。
数据范围
1≤n≤500
−10000≤三角形中的整数≤10000
输入样例:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出样例:
30
题解:
题目的要求是找出一条从顶点走到底层路径上数字和最大的一条路径。
有两种途径分别是从顶点走到底层,另一种是从底层走到顶点。当站在某一个点的时候,有两种选择,选择左边,或者选择右边。
如果选择第一种途径:从顶点走到底层,那么需要对边界进行判断,如果选择第二个途径从底层走到顶层,那么每一个点都可以从右下方的点或者左下方的点来。
进一步,我们可以将题目变形为从底层走到某一个点的最大路径,题目的答案中的这个点就是顶点。由于每一个点都可以从右下方的点或者左下方的点来,那么将从底层走到某一个点的最大路径=max(底层走到某一个点的左下方点的最大值,底层走到某一个点的右下方点的最大值)+自身的值。下面使用闫氏DP分析法来分析。
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int w[N][N],f[N][N];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++) cin>>w[i][j];
}
for(int i=1;i<=n;i++) f[n][i]=w[n][i]; //我们是从底层往顶点走,那么最下面一层的f[n][j]即为w[n][j]
for(int i=n-1;i>=1;i--){
for(int j=1;j<=i;j++){
f[i][j]=max(f[i+1][j]+w[i][j],f[i+1][j+1]+w[i][j]);
}
}
cout<<f[1][1]<<endl;//即从底层往顶点走的所有路径的最大之
}
代码优化:
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int f[N][N]; //我们可以用f[i][j]来表示最大路径的同时,存放点(i,j)的值
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++) cin>>f[i][j];
}
//for(int i=1;i<=n;i++) f[n][i]=w[n][i];
for(int i=n-1;i>=1;i--){
for(int j=1;j<=i;j++){
f[i][j]+=max(f[i+1][j],f[i+1][j+1]);
/*
变形过程:
f[i][j]=max(f[i+1][j]+w[i][j],f[i+1][j+1]+w[i][j]);==>
f[i][j]=max(f[i+1][j],f[i+1][j+1])+w[i][j];==>
f[i][j]+=max(f[i+1][j],f[i+1][j+1]);
*/
}
}
cout<<f[1][1]<<endl;
}