- 博客(184)
- 收藏
- 关注
原创 Runtime 上下文管理:计算实例的生命周期、延迟最小化与上下文切换优化
Runtime 需要维护一个计算上下文对象,用于管理特定执行会话的所有资源和状态,包括内存句柄、流(Stream)以及算子缓存。Runtime 的上下文管理机制是实现高性能、高并发推理服务的基础。通过精心设计的上下文生命周期、流的解耦以及对内存资源的严格隔离,Runtime 确保了上层图的执行计划能够高效、安全地转化为 NPU 的并行操作,从而最小化延迟并最大化吞吐量。CANN 组织链接Runtime 仓库链接。
2026-02-07 12:09:23
386
3
原创 Runtime 错误处理机制深度:异常捕获、容错调度与安全状态恢复
CANN Runtime 在错误处理中扮演了至关重要的容错和安全守卫角色。它通过多层次的异常捕获机制,确保了底层硬件故障能够被及时、准确地隔离和报告,同时保证了 NPU 资源的正确释放和状态的稳定,是实现高可靠性 AI 推理和训练部署的必要条件。CANN 组织链接Runtime 仓库链接。
2026-02-07 12:08:47
356
原创 Runtime 内存管理深化:动态内存池、碎片整理与异构内存的统一视图
在 HCCL/SHMEM 场景下,Runtime 负责将本地 HBM 地址转换为全局、可路由的地址句柄,并将这些句柄安全地传递给通信库。如 GE 章节所述,对于模型权重和生命周期较长的中间结果,Runtime 会执行一次性的大块 HBM 内存分配(内存池化)。CANN Runtime 的内存管理策略是混合式的,它结合了 GE 提供的静态预分配能力和自身的动态管理能力。在长时间运行的推理服务中,内存碎片化是性能衰退的主要原因。Runtime 是管理本地(TCM/L0/L1)和全局(HBM)内存访问的协调者。
2026-02-07 12:07:53
325
原创 GE 引擎与分布式图的资源绑定:模型并行拓扑感知与通信算子的静态耦合
GE 在分布式计算中扮演了系统架构师的角色。它不仅仅优化了算子内部的性能(如融合),更重要的是,它通过理解硬件拓扑和模型并行策略,在图级别上精确地安排了计算与通信的执行顺序和资源分配,这是实现大规模、高效分布式训练和推理的基础。CANN 组织链接GE 仓库链接。
2026-02-07 12:06:14
225
原创 GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
GE 不仅是一个调度器,更是一个智能的、版本感知的图优化和兼容性管理引擎。通过对算子签名的严格匹配和规则版本化的图重写策略,GE 确保了上层框架的不断演进不会轻易破坏底层 ops-nn 算子库的优化成果,保证了模型的稳定部署和前向兼容性。CANN 组织链接GE 仓库链接。
2026-02-07 12:05:38
386
原创 GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
图中的每一个节点(算子)都被视为一个原子执行单元。输入数据完整性:在算子开始执行前,其所有输入张量(来自上游算子或模型输入)的数据必须是完全就绪的,这由 GE 构造的依赖边来保证。输出一致性:算子执行完成后,其输出张量必须是稳定且一致的,可供下游算子安全读取。
2026-02-07 12:03:46
251
原创 ops-cv 归一化算子深度实践:BatchNorm 在多维特征图上的并行化与精度维护
BatchNorm 是在训练和推理中稳定网络性能的关键操作,它需要在特征图的批次(Batch)和通道(Channel)维度上计算统计量。并更新 Running Mean/Variance)和推理(使用固定的统计量)。BatchNorm 的核心统计量计算(平方、求和、开方)高度依赖于。BatchNorm 的实现必须同时支持训练(需要计算。BatchNorm 的核心计算涉及对输入特征图。统计量计算完成后,BatchNorm 应用缩放。在训练模式下,需要缓存前向传播的输入。和中间结果,以便计算梯度。
2026-02-07 12:02:44
242
原创 ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
对于特殊的卷积变体(如深度可分离卷积 Depthwise Conv 或特定的非标准 Padding),如果 ops-cv 库没有提供高度优化的版本,开发者可以通过 Ascend C 编写自定义内核。的卷积算子必须支持从输入(FP32/FP16)到权重(FP16/INT8)到输出(FP16)的混合精度流程。图像预处理中的归一化(如 BatchNorm 的均值和方差计算)是另一个高频操作。视觉任务通常涉及大量的数据操作,如图像缩放、填充和数据类型转换。这样的操作,如果由 CPU 执行,将成为推理的瓶颈。
2026-02-07 12:02:05
233
原创 ops-math 算子库的指数与对数运算:精度、查表与自定义算子中的利用
自定义算子(Ascend C/PyPTO)并非总是需要从头实现基础数学函数,它们应优先调用 ops-math 提供的加速接口。
2026-02-07 12:01:30
203
原创 ops-math 算子库的精度转换角色:作为混合精度计算链的桥梁与自定义算子的基础接口
ops-math库中所有算子都必须清晰地定义其支持的输入/输出数据类型,这是混合精度策略的基础。自定义算子(如 GeluCustomKernel)并不需要重新实现指数函数或多项式,而是通过调用 ops-math 提供的底层硬件加速函数来实现。底层指令调用:Ascend C 编译器知道如何将高级的Tanh()或Exp()宏调用,解析为对应的、在 Vector Unit 上高效执行的 PTO-ISA 指令,这些指令的实现直接来源于 ops-math 库的优化版本。
2026-02-07 12:00:52
254
原创 CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
ATVOSS 的高度可扩展性体现在其开放的接口规范上。如果开发者需要实现特定的数学公式,可以按照 ATVOSS 的子程序接口规范编写自定义模板。由于遵循统一的流水线协议,这些自定义模块可以与现有的库组件(如通用的DataCopyIn或Exp子程序)直接拼接,并自动享受到框架提供的内存管理和流水线优化能力。
2026-02-06 19:44:22
388
原创 CANN ATVOSS 技术深度解析:基于 Ascend C 模板的高性能 Vector 算子子程序库与融合计算机制
如果现有的子程序库无法满足特定算法,ATVOSS 允许开发者定义符合规范的自定义子程序。由于其基于 C++ 模板,新定义的子程序可以无缝融入现有的融合链条中,并享受到框架提供的流水线管理和内存优化服务。ATVOSS 是 CANN 平台在算子开发领域的一项重要基础设施。它通过高性能的模板子程序,解决了 Vector 算子开发中常见的性能低下、逻辑复杂、难以融合等痛点。对于追求极致性能的模型开发者而言,ATVOSS 不仅提供了一套现成的工具箱,更定义了一种高效、科学的异构计算编程范式。
2026-02-06 19:43:18
317
原创 CANN metadef 深度解析:动态形状元数据管理、图编译器接口规范与序列化执行机制
在 metadef 的张量定义中,形状(Shape)不再局限于固定数值。metadef 允许将张量的特定维度标记为特定的标识符(如 -1),代表该维度在图编译阶段是未知的,其具体数值将在运行时通过执行流获取。对于某些算子,不同张量间的维度可能存在约束关系(如矩阵乘法的KKK轴对齐)。metadef 通过属性系统支持存储这些约束元数据,使得图引擎可以在编译阶段提前规划出适配多种形状的内存池。
2026-02-06 19:39:52
401
原创 CANN metadef 架构解析:算子原型定义、计算图中间表示与异构内存布局规范
在异构计算架构中,计算任务的执行依赖于对硬件资源和逻辑算法的精确描述。metadef 仓库是 CANN 架构中专门负责元数据定义的组件,其核心逻辑在于建立一套标准化的编程接口和数据结构,用于描述计算图中的每一个节点及其交互行为。当深度学习模型从前端框架(如 PyTorch 或 MindSpore)转换到昇腾 AI 处理器执行时,所有的逻辑指令必须先被翻译成基于 metadef 规范的中间表示(Intermediate Representation, IR)。
2026-02-06 19:38:51
421
原创 CANN metadef 核心解析:计算图原型定义、算子元数据抽象与异构系统互操作机制
在昇腾 CANN(Compute Architecture for Neural Networks)异构计算架构中,metadef(元数据定义)模块处于计算图层级与硬件抽象层级之间的核心衔接位置。该仓库定义了 CANN 系统中所有计算图节点、算子原型、张量属性以及执行描述符的基础数据结构。metadef 的核心职能是提供一套统一的“元语言”,使得上层深度学习框架(如 PyTorch、TensorFlow、MindSpore)生成的逻辑计算图能够被准确地转换为昇腾硬件可识别的中间表示(IR)。
2026-02-06 19:38:16
313
原创 CANN PyPTO 编程范式:并行张量计算架构、Tile 分块调度机制与异构内存协同深度解析
在高性能算子开发领域,如何充分调度昇腾 AI 处理器的异构计算资源是实现极致加速的核心难点。PyPTO(发音:pai p-t-o),全称为,是 CANN 平台提供的一种针对并行张量与分块操作的编程范式。其设计逻辑在于将复杂的张量计算任务解构为标准化、可并行的分块(Tile)逻辑,从而在保障开发效率的同时,最大化硬件指令的吞吐量。PyPTO 位于 CANN 软件栈的中底层。它向上承接深度学习框架(如 PyTorch、MindSpore)的张量计算请求,向下通过ascendc。
2026-02-06 19:36:52
398
原创 CANN PyPTO 编程范式深度解析:并行张量计算架构、内存层级控制与双缓冲流水线调度机制
PyPTO 编程范式通过将并行张量计算拆解为结构化的分块操作,为昇腾 AI 处理器提供了一种兼顾效率与性能的开发路径。它通过显式的内存层级控制、自动化的双缓冲流水线调度以及高效的信号量同步机制,确保了算子在处理大规模深度学习任务时的极致吞吐。掌握 PyPTO 范式,不仅能提升算子开发的交付速度,更是实现软硬件协同优化、挖掘昇腾硬件极致算力的核心手段。
2026-02-06 19:36:02
416
原创 CANN PyPTO 编程范式深度解析:并行张量计算架构、分块调度逻辑与片上内存控制机制
PyPTO 的设计逻辑在于对计算过程进行高层抽象,使开发者能够采用符合数学逻辑的张量视图进行编程,而底层的物理核心分配、流水线调度以及同步原语则由范式框架自动执行。传统的底层编程方式要求开发者手动控制每一个计算核心的任务分配、同步以及复杂的内存层次搬运,这导致了极高的开发成本。开发者编写的代码逻辑应用于单个物理核心,但通过 PyPTO 的调度,这些核心会并行处理不同的 Tile。编程范式的核心目标是通过标准化的编程模型,将复杂的异构计算任务转化为结构化的并行张量与分块(Tile)操作。
2026-02-06 19:35:14
348
原创 CANN Driver 驱动层核心原理机制:异构资源池化、内核态任务编排与底层通信链路治理
CANN Driver 驱动模块不仅是硬件使能的工具,更是异构计算资源的精密管理器。它通过池化技术解决了显存分配的效率问题,通过异步流控解决了任务调度的延迟问题,并通过 P2P 与 HCCS 解决了大规模分布式计算的传输瓶颈。掌握驱动层的技术细节,对于理解整个昇腾计算架构的运作逻辑以及进行深度的性能调优具有不可替代的价值。
2026-02-06 19:26:42
269
原创 Portainer+cpolar 实现 Docker 远程自由管理,不受局域网限制
Portainer 是一款轻量化的 Docker 可视化管理工具,核心功能围绕 Docker 生态展开,可直观查看容器的运行状态、镜像的版本信息,还能对容器进行创建、停止、删除、备份等全生命周期管理,同时支持查看宿主机的系统资源使用情况,让原本需要命令行操作的 Docker 管理变得可视化、简单化。
2026-02-06 17:44:53
15363
11
原创 太香了!群晖NAS FTP外网访问不用再折腾路由器
群晖 NAS FTP 服务是群晖设备自带的文件存储共享功能,能实现大容量文件的存储、多用户权限管理,支持不同终端设备访问,是家庭和中小企业搭建私人文件存储中心的核心功能,可满足文件备份、团队素材共享等多种需求。
2026-02-03 09:16:02
10710
13
原创 《从70%到90%采纳率:专业版如何让AI代码“直接能跑”?》
飞算JavaAI专业版通过智谱4.7+自研Java模型优化,将AI生成代码采纳率从70%提升至90%,显著减少开发者调试成本。其优势体现在:1)生成完整工程代码(含Controller、Service、配置等),而非片段;2)规避Java典型陷阱(如内存泄漏、并发问题),内置防御性编程;3)性价比高(9.9元/月无限Token),较同类产品节省50%以上成本。实测显示,其代码健壮性提升20%,实现“生成即运行”,大幅提升开发效率。
2026-01-31 10:50:24
13805
1
原创 cpolar拯救被困在局域网中的DS File,让NAS文件访问自由到离谱
DS File 作为群晖 NAS 专属的文件管理工具,核心功能围绕文件的全生命周期管理展开,既能对 NAS 内的文件进行分类存储、快速检索,也支持跨设备的文件同步与共享,适配 Android 手机、平板及部分智能家居设备,尤其适合需要高频管理 NAS 文件的职场办公人群、家庭用户,其最大优点在于数据自主掌控,无需依赖第三方网盘,且操作逻辑贴近日常文件整理习惯,上手门槛低。
2026-01-29 22:47:13
13370
17
原创 CentOS搭建私人漫画库:Teemii+cpolar,出门也能刷收藏!
Teemii 是面向漫画爱好者的管理工具,主要功能包括自动抓取网络漫画、离线保存到 CentOS 服务器、按名称和类型智能整理资源,同时支持多端在线阅读,既可以搜索添加喜欢的漫画到书架,也能导入本地已有的漫画文件,形成统一的收藏库。
2026-01-26 18:01:17
10814
17
原创 告别听歌枷锁 R3PLAY + cpolar 实现真正的听歌自由
R3PLAY(又称 R3PLAYX)是一款聚焦核心听歌需求的第三方网易云播放器,覆盖 Windows、macOS、Linux 及 Docker 部署环境,核心功能围绕 “减法设计” 展开 —— 剔除广告、会员推广等冗余模块,仅保留封面展示、歌词同步和基础播放控制,免费播放海量歌曲的特性,尤其适合学生党、职场打工人等追求低成本听歌体验的人群,低配设备也能流畅运行是其突出优点。
2026-01-22 17:22:05
14250
18
原创 一个牛逼的Edge插件,国内直接用Gemini 3,NanoBanana2,GPT 5.2
DeepSider聚合了最新的Gemini 3.0 Pro和Gemini 3.0 Pro Thinking,以及Sora 2,GPT-5,Claude 4.5,Nano Banana 2,Grok4…DeepSider的特点就是专为中文用户设计,没有网络门槛,装上就能随时在侧边栏与AI对话,生成图片或视频。可以看到,Gemini 3.0 Pro正确地理解了用户要求,动画也很流畅,代码中几乎没有Bug存在。以Edge浏览器为例,进入插件安装页面后,点击获取按钮,就可以安装DeepSider插件了。
2025-12-27 20:47:31
5244
原创 昇腾 Triton-Ascend 开源实战:架构解析、环境搭建与配置速查
本文详细解析了Triton-Ascend开源项目,该项目实现了OpenAI Triton编译器在华为昇腾NPU的后端支持。文章从项目架构、核心功能模块(包括昇腾适配、补丁管理、第三方依赖等)展开说明,并提供了完整的开发环境搭建指南,涵盖硬件要求、CANN SDK安装和基础配置验证。通过向量加法示例演示算子开发流程,并深入探讨了针对昇腾910B的矩阵乘法性能优化策略,包括Autotune配置和性能分析工具使用。
2025-12-26 11:31:22
16328
原创 vLLM-Ascend 安装部署与环境配置指南
vLLM-Ascend是专为华为昇腾NPU设计的硬件插件,使vLLM框架能高效运行于昇腾平台。该项目支持主流开源模型,提供与vLLM兼容的API,并针对NPU进行性能优化。文章详细介绍了项目结构、环境部署和配置方法:包括昇腾驱动安装、CANN工具包配置、Python环境搭建,以及通过Docker容器化部署方案。核心代码围绕昇腾后端适配、算子实现和调度接口扩展展开,支持单节点和多节点部署。通过示例脚本验证安装后,用户可利用环境变量和附加配置灵活优化推理性能。该项目为昇腾平台上的大模型推理提供了高效可靠的解决方
2025-12-26 10:38:48
15282
原创 昇腾 Triton-Ascend 开源实战,保姆级环境搭建教程
接下来给大家整理了一些常见的会经常碰到的一些问题,更好的帮助大家进行环境搭建和开发。编译时报错这是因为未找到 CANN 头文件。请检查是否执行,或确认环境变量是否包含 CANN 的 include 目录。运行时出现检查确认 NPU 设备是否可见。如果是 Docker 环境,确认启动参数中包含了等设备映射。相比官方 Triton,Ascend 版本有哪些限制目前部分高级原子操作(Atomic Add on float)和特定的大规模 Reduce 操作可能在性能或支持度上仍在完善中。建议定期git pull。
2025-12-10 20:46:32
17028
1
原创 vLLM Ascend 大语言模型推理项目架构解析与部署
vLLM-Ascend 是 vLLM 项目的一个社区维护的硬件插件,专为华为昇腾(Ascend)NPU 设计,使 vLLM 能够无缝运行在昇腾硬件平台上。该项目遵循 vLLM 社区的硬件插件化设计原则,提供了高性能的大语言模型推理能力。这篇文章的话我主要会带大家来熟悉一下vLLM-Ascend项目的结构,部署和配置。支持主流开源模型,包括 Transformer、MoE、Embedding 和多模态模型提供与 vLLM 兼容的 API 接口针对昇腾 NPU 进行了性能优化。
2025-12-10 20:34:20
12577
原创 数字人又要变天了!十行代码调用电影级3D数字人,RK3566无GPU也能跑
具身智能(Embodied AI)简单理解就是"大模型有了身体"。当你和ChatGPT对话时,如果它不只是冷冰冰的文字回复,而是以一个3D数字人的形象出现,能做出恰当的表情、手势,甚至根据对话内容跳个舞,这种交互体验完全不在一个次元。星云平台正是要做具身智能的基础设施,它提供了一整套SDK,涵盖3D数字人渲染、语音合成、动作驱动、端侧渲染等核心能力。开发者不需要从零搭建复杂的图形引擎或动作捕捉系统,只需调用SDK接口,就能快速构建出能看、能听、能说、能动的具身智能应用。
2025-12-02 13:49:11
8134
原创 喂饭级 Gemini 3.0 使用教程,国内实测可用,看完轻松学会
谷歌Gemini 3.0模型震撼发布,仅用几行提示词就能两分钟内生成完整Web版MacOS系统,支持应用交互和网页浏览。这款全能AI在推理、多模态等基准测试中全面领先,还能一键生成视频编辑器、小游戏等完整应用。推荐使用中文友好的DeepSider浏览器插件(官网deepsider.ai),免费集成Gemini 3.0、GPT-5等数十款顶级AI模型,支持代码生成、文档解析、视频制作等功能,无需特殊网络即可流畅使用。实测3分钟生成1600行无bug代码,是中文用户体验前沿AI技术的便捷工具。
2025-11-28 11:17:46
5075
2
原创 Qoder 降价,立即生效!首购 2 美金/月
Qoder AI编程工具全球上线两月获数十万开发者支持。现推出首购优惠:月费从10美元降至2美元(约14.2元人民币),解锁全部核心功能。主要升级包括:集成四种智能模型分级选择器;支持10万代码文件检索的上下文工程能力;优化token消耗提升性价比。新增Repo Wiki自动生成项目文档和Quest模式异步执行任务功能。CLI工具实现自然语言编程,内存占用降低70%。JetBrains插件即将上线。首购优惠限新用户,续费恢复原价。
2025-11-12 16:09:10
4281
2
原创 LoRA微调新玩法,用CANN的aclnnAddLora算子让大模型适配提速10倍
LoRA推理性能优化实战:华为CANN的acclnAddLora算子解析 摘要:本文深入探讨了LoRA微调技术在大模型推理中的性能瓶颈问题,并介绍了华为CANN框架提供的acclnAddLora融合算子解决方案。该算子通过将基础权重与LoRA权重的矩阵乘法、低秩合并和结果加和三个计算步骤融合为单一操作,显著减少了内存访问和kernel启动开销。实验表明,在LLaMA-7B模型上,该算子实现了10.7倍的加速比,吞吐量提升至97523 tokens/s。
2025-11-08 11:08:34
6770
2
原创 从环境搭建到项目实战:为什么这本《AI+Java编程入门》成了新手的“通关秘籍”?
在Java学习的赛道上,从来不缺教程,但真正能让零基础小白“把代码跑起来” 的书,却寥寥无几。大多数教程要么一上来就讲抽象语法,要么项目复杂到让人望而生畏。而今天推荐的这本由清华大学出版社出版的新书——📘《AI+Java编程入门:让代码跑起来》正在打破这一困局。它不是一本“大而全”的理论手册,而是一本以“动手实践”为核心、融合AI智能工具的现代编程入门指南。
2025-10-31 10:17:06
3023
3
原创 VecDeque的环形缓冲区设计,教你如何从原理到实践的深度探索
Rust的VecDeque采用环形缓冲区设计,通过移动指针而非数据实现高效操作。相比Vec的O(n)删除开销,VecDeque在两端操作(如日志系统维护固定容量记录)时性能可达O(1)。其核心是模运算索引环绕和精妙的内存布局,包括: 两个指针(head/tail)追踪数据边界 插入时自动处理环形索引 动态扩容策略 实际应用(如高频交易系统)显示性能可提升30倍,特别适合需要频繁两端操作的场景。
2025-10-29 10:54:50
5363
28
原创 用Python的Pygal库,生成SVG图表真是一个小小的宝藏库!
Pygal:简洁高效的Python数据可视化库 Pygal是一个专注于SVG图表生成的Python库,以其简洁API和矢量图形特性成为数据可视化利器。相比matplotlib等复杂工具,Pygal优势在于: 极简代码实现专业图表(折线/柱状/饼图等) 矢量SVG输出支持无损缩放 内置交互效果无需额外编码 丰富的样式自定义选项 典型应用场景包括: 快速生成业务报表(5行代码创建折线图) 制作响应式。
2025-10-23 20:05:00
3581
3
原创 谷歌云+Apache Airflow,数据处理自动化的强力武器
Apache Airflow 是一个强大的工作流管理平台,特别适合在谷歌云上实现数据处理自动化。本文介绍了如何在Cloud Composer上搭建Airflow环境,并通过示例展示了如何创建第一个数据处理DAG(有向无环图)。关键点包括:使用GCSToBigQueryOperator将GCS数据导入BigQuery,用BigQueryExecuteQueryOperator进行数据转换,以及设置任务依赖关系。文章还列举了常用的Airflow操作符,如文件操作和转换等。通过Airflow,开发者可以轻松实现复
2025-10-03 16:40:58
4649
3
原创 用Python+smtplib实现邮件自动发送,日常工作效率提升300%
Python smtplib邮件自动发送指南 摘要:Python的smtplib库可轻松实现邮件自动发送,解决重复发送邮件的痛点。文章详细介绍了如何使用smtplib发送纯文本、HTML格式邮件,以及添加附件和图片的方法。关键点包括:SMTP服务器连接方式(普通/SSL加密)、授权码获取、HTML格式美化、内嵌图片实现、附件添加等。通过代码示例展示了完整的邮件发送流程,包括多收件人处理、抄送/密送设置等实用技巧。这些自动化方法可大幅提升工作效率,特别适合定期发送报告、通知等场景。
2025-09-10 19:31:50
3900
3
原创 Python实战教程:PDF文档自动化编辑与图表绘制全攻略
本文介绍了使用Python自动化处理PDF文档的技巧,重点讲解了PyPDF2和matplotlib库的应用。主要内容包括:1) 使用PyPDF2读取PDF文本和页面信息;2) 合并多个PDF文件或拆分大文件;3) 利用matplotlib绘制数据图表并保存为PDF;4) 将生成的图表嵌入现有PDF文档;5) 处理中文路径和字体显示等实用技巧。这些方法能显著提升办公效率,将繁琐的手动操作转化为自动化流程,适用于报告生成、文档处理等多种场景。通过Python实现PDF自动化,可以节省时间、减少错误,使文档处理工
2025-08-13 16:21:11
3478
2
Java开发面试-RabbitMQ专区
2023-10-28
Java开发面试-MongoDB专区
2023-10-28
Java开发面试-nacos专区.md
2023-10-28
Java开发面试-Redis专区
2023-10-28
Java开发面试-群面专区
2023-10-28
CentOS 7安装FTP服务器.md
2023-10-30
「文件夹名称筛选工具 - 简单实用的Java小工具」
2024-01-24
Linux操作系统第二次测试题.docx
2023-11-20
Linux操作系统第三次测试题.docx
2023-11-20
Linux操作系统课程第一次测试题.docx
2023-11-20
Linux操作系统基础第三部分.pptx
2023-11-20
LInux操作系统基础-第二部分.pptx
2023-11-20
软件项目管理-项目质量管理
2023-11-17
软件工程项目管理结课大作业
2023-11-16
项目管理基础.zip
2023-11-16
项目管理-项目进度管理作业
2023-11-17
项目管理-项目范围管理作业
2023-11-17
项目管理-项目成本管理
2023-11-17
scrum开发模式与禅道管理系统.zip
2023-11-16
CentOS 7 更换yum源.zip
2023-10-30
CentOS 7 中完成普通用户向root用户借权的设置.zip
2023-10-30
CentOS 7 中普通用户切换root用户.zip
2023-10-30
CentOS 7 图形化界面与命令行界面互换.zip
2023-10-30
完成XShell和CentOS的连接.zip
2023-10-30
CentOS 7安装DNS服务器.md
2023-10-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅