2024ICLR的文章,2025还有一篇timemixer++
时间序列预测在交通规划和天气预报等领域有着广泛的应用。然而,现实世界的时间序列通常呈现出复杂的时间变化,这使得预测极具挑战性。超越了平面分解和多周期分析的主流范式,我们以一种新的多尺度混合视角分析了时间变化,这是基于一个直观但重要的观察,即时间序列在不同的采样尺度上呈现出不同的模式。微观和宏观信息分别反映在细尺度和粗尺度上,从而可以内在地解开复杂的变化。基于这一观察,我们提出TimeMixer作为一种完全基于MLP的架构,具有过去可分解混合(PDM)和未来多预测混合(FMM)块,以充分利用过去提取和未来预测阶段的解纠缠多尺度序列。具体而言,PDM将分解应用于多尺度序列,并进一步将分解的季节和趋势分量分别在细到粗和粗到细的方向上混合,从而依次聚合微观季节和宏观趋势信息。FMM进一步整合了多个预测器,以在多尺度观测中利用互补的预测能力。因此,TimeMixer能够在长期和短期预测任务中实现一致的最先进性能,并具有良好的运行效率。
过去-可分解-混合 (PDM)
未来-多重预测器-混合 (FMM)
解纠缠变化:分解多个尺度的变化
互补预测:多预测器混合多尺度信息
超越了以前的方法,我们从多尺度混合的新角度解决了序列预测中复杂的时间变化,同时利用了多尺度序列的解纠缠变化和互补预测能力。
我们提出TimeMixer作为一种简单但有效的预测模型,它能够在历史提取和未来预测阶段结合多尺度信息,这得益于我们量身定制的可分解和多预测器混合技术。
TimeMixer在长期和短期预测任务中都达到了一致的最新性能,在各种基准测试中都具有卓越的效率。
向上整合,这可以为较粗尺度的季节性建模补充详细信息
为什么趋势项要自上而下,因为更细粒度的变化,对于趋势项容易引入一些噪声
评价指标是M4竞赛的评价指标
在频域上对季节、趋势权重进行打点
细粒度的趋势项、季节项、混合项对模型的预测
细粒度对
把他们混合起来可以实现波动上升的效果
DFT,转到频域,提取高频模式,再把高频模式转为季节项,再把季节项减去
集成策略:先把多个预测器混合后再算loss,与把各预测器loss算出后取平均