圣诞活动预热开始啦,汉堡店推出了全新的汉堡套餐。为了避免浪费原料,请你帮他们制定合适的制作计划。
给你两个整数 tomatoSlices
和 cheeseSlices
,分别表示番茄片和奶酪片的数目。不同汉堡的原料搭配如下:
- 巨无霸汉堡:4 片番茄和 1 片奶酪
- 小皇堡:2 片番茄和 1 片奶酪
请你以 [total_jumbo, total_small]
([巨无霸汉堡总数,小皇堡总数])的格式返回恰当的制作方案,使得剩下的番茄片 tomatoSlices
和奶酪片 cheeseSlices
的数量都是 0
。
如果无法使剩下的番茄片 tomatoSlices
和奶酪片 cheeseSlices
的数量为 0
,就请返回 []
。
示例 1:
输入:tomatoSlices = 16, cheeseSlices = 7 输出:[1,6] 解释:制作 1 个巨无霸汉堡和 6 个小皇堡需要 4*1 + 2*6 = 16 片番茄和 1 + 6 = 7 片奶酪。不会剩下原料。
示例 2:
输入:tomatoSlices = 17, cheeseSlices = 4 输出:[] 解释:只制作小皇堡和巨无霸汉堡无法用光全部原料。
示例 3:
输入:tomatoSlices = 4, cheeseSlices = 17 输出:[] 解释:制作 1 个巨无霸汉堡会剩下 16 片奶酪,制作 2 个小皇堡会剩下 15 片奶酪。
示例 4:
输入:tomatoSlices = 0, cheeseSlices = 0 输出:[0,0]
示例 5:
输入:tomatoSlices = 2, cheeseSlices = 1 输出:[0,1]
提示:
0 <= tomatoSlices <= 10^7
0 <= cheeseSlices <= 10^7
问题简要描述:返回不浪费原料的汉堡制作方案
细节阐述:
- 4x+2y=tomatoSlices,x+y=cheeseSlices,解方程得y=(4×cheeseSlices−tomatoSlices)/2,x=cheeseSlices−y
class Solution {
public List<Integer> numOfBurgers(int tomatoSlices, int cheeseSlices) {
int k = 4 * cheeseSlices - tomatoSlices;
int y = k / 2;
int x = cheeseSlices - y;
return k % 2 != 0 || x < 0 || y < 0 ? List.of() : List.of(x, y);
}
}