不浪费原料的汉堡制作方案(Lc1276)——数学

文章讲述了如何根据给定的番茄片和奶酪片数量,通过计算制定合理的巨无霸和小皇堡制作计划,确保原料不被浪费。通过解方程找到最佳组合,若无法整除或导致负数,则返回空列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

圣诞活动预热开始啦,汉堡店推出了全新的汉堡套餐。为了避免浪费原料,请你帮他们制定合适的制作计划。

给你两个整数 tomatoSlices 和 cheeseSlices,分别表示番茄片和奶酪片的数目。不同汉堡的原料搭配如下:

  • 巨无霸汉堡:4 片番茄和 1 片奶酪
  • 小皇堡:2 片番茄和 1 片奶酪

请你以 [total_jumbo, total_small]([巨无霸汉堡总数,小皇堡总数])的格式返回恰当的制作方案,使得剩下的番茄片 tomatoSlices 和奶酪片 cheeseSlices 的数量都是 0

如果无法使剩下的番茄片 tomatoSlices 和奶酪片 cheeseSlices 的数量为 0,就请返回 []

示例 1:

输入:tomatoSlices = 16, cheeseSlices = 7
输出:[1,6]
解释:制作 1 个巨无霸汉堡和 6 个小皇堡需要 4*1 + 2*6 = 16 片番茄和 1 + 6 = 7 片奶酪。不会剩下原料。

示例 2:

输入:tomatoSlices = 17, cheeseSlices = 4
输出:[]
解释:只制作小皇堡和巨无霸汉堡无法用光全部原料。

示例 3:

输入:tomatoSlices = 4, cheeseSlices = 17
输出:[]
解释:制作 1 个巨无霸汉堡会剩下 16 片奶酪,制作 2 个小皇堡会剩下 15 片奶酪。

示例 4:

输入:tomatoSlices = 0, cheeseSlices = 0
输出:[0,0]

示例 5:

输入:tomatoSlices = 2, cheeseSlices = 1
输出:[0,1]

提示:

  • 0 <= tomatoSlices <= 10^7
  • 0 <= cheeseSlices <= 10^7

问题简要描述:返回不浪费原料的汉堡制作方案 

细节阐述:

  1.  4x+2y=tomatoSlices,x+y​=cheeseSlices​,解方程得y=(4×cheeseSlices−tomatoSlices)/2,x=cheeseSlices−y​
class Solution {
    public List<Integer> numOfBurgers(int tomatoSlices, int cheeseSlices) {
        int k = 4 * cheeseSlices - tomatoSlices;
        int y = k / 2;
        int x = cheeseSlices - y;
        return k % 2 != 0 || x < 0 || y < 0 ? List.of() : List.of(x, y);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值