Hive基础篇

数据仓库介绍

  • 专业定义
    • 英文名称为Data Warehouse,可简写为DW。
    • 是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。
    • 它是单个数据存储,出于分析性报告和决策支持目的而创建。
    • 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
  • 通俗解释
    • 面向分析的存储系统(面向数据分析的存储系统)
    • 一个面向主题的(Subject Oriented)、集成的(Integrate)、不可修改的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于数据分析、辅助管理决策。
      • 面向主题:指数据仓库中的数据是按照一定的主题域进行组织。
      • 集成:指对原有分散的数据库数据经过系统加工, 整理得到的消除源数据中的不一致性。
      • 不可修改:指一旦某个数据进入数据仓库以后只需要定期的加载、刷新,不会更改。
      • 反映历史变化:指通过这些信息,对企业的发展历程和未来趋势做出定量分析预测。
  • 数据仓库和数据库对比分析
    • 主要联系
      • 两者均是用来存储数据的,即均为数据的存储载体。
      • 数据仓库也是数据库,是数据库的一种衍生、延深应用。
      • 数库仓库和数据库之间存在数据交互,即你中有我、我中有你。
        • 数据库中的在线数据推送到离线的数据仓库用于分析处理
        • 数据仓库中分析处理的结果数据也通常推送到关系数据库中,便于前台应用的可视化展现应用。
      • 数据仓库的出现,并不是要取代数据库,且当下大部分数据仓库还是用关系数据库管理系统来管理的,即数据库、数据仓库相辅相成、各有千秋。
    • 主要区别
      • 数据库是面向事务的设计,数据仓库是面向主题设计的。
      • 数据库一般存储在线交易数据,实时性强存储空间有限,数据仓库存储的一般是历史数据,实时性弱但存储空间庞大。
      • 数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。
      • 数据库是为捕获数据而设计,即实时性强吞吐量弱,数据仓库是为分析数据而设计,即吞吐量强实时性弱。

 产生背景

  • 背景
    • 每个想做大数据应用的不都是程序员,需要有非程序员使用大数据的便捷方式。
    • 程序员也分三六九等,总之越简单易用越好,需要有降底程序员做大数据处理的成本和难度。
    • 基于hadoop的数据仓库构建应用的需求广泛, 需要提供专门、完整的解决方案。
    • 传统的数据仓库如oracle,sqlserver,sybase,Teradata等,均是完美支持SQL标准的,对hadoop数据仓库提供了实现渠道。
    • Facebook的强大商业需求与商业化运作
  • 定义
    • Hive是建立在 Hadoop 上的数据仓库基础架构和解决方案
    • 架构:支持拿来即用,亦支持灵活的参数和计算引擎的变更
  • 作用
    • 拿出了数据仓库构建的完整解决方案
  • 意义
    • 基于Hadoop平台解决了企业数据仓库构建的核心技术问题,证明了Hadoop平台的强大。
    • 进一步降低了Hadoop使用的准入门槛

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值