文章目录
数值运算
多项式的微分与积分
1.polyval
用于求值
a = [9,-5,3,7];
x = -2:0.001:5;
f = polyval(a,x);
plot(x,f);
2.polyder
求导
a = [9,-5,3,7];
polyder(a);
%求值
polyval(polyder(a),5);
3.conv
多项式乘法,运算结果为一维向量
a = [20,-7,5,10];
b = [4,12,-3];
x = -2:0.01:1;
polyval(conv(a,b),x);
4.polyint
polyint(行向量,常数);
积分
p = [5 0 -2 0 1];
polyint(p,5);
数值的微分和积分
1.diff
用于求后一项与前一项的差
x = [1 2];
y = [5 7];
slope = diff(y)./diff(x);
2.midpoint rule
面积化成中值运算
h = 0.05;
x = 0:h:2;
midpoint = (x(1:end-1)+x(2:end))./2;
y = 4*midpoint.^3;
s = sum(h*y);
3.trapezoid rule using trapz()
面积化成梯形计算
h = 0.05;
x = 0:h:2;
y = 4*x.^3
s = h*trapz(y);
4. 1/3 simpson’s
每次计算两个梯形面积
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
s = h/3*(y(1)+2*sum(y(3:2:end-2))+4*sum(y(2:2:end))+y(end));
5. integral
用函数句柄计算
y = @(x)1./(x.*3-2*x-5);
integral(y,0,2);
二重积分三重积分就是integral2、integral3。积分上下限依次是用内到外