C语言100题练习计划 15——如何求最大公约数和最小公倍数?

名人说:古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。——苏轼
进度:C/C++语言100题练习计划专栏,目前15/100

🐼本篇内容简介一、概念说明-->二、问题呈现-->三、源码实现(+注释)-->四、输出结果展示-->五、流程分析

🥇C语言100题练习专栏计划目的:巩固练习C语言,增强上机、动手实践能力,交流学习!题量随时间的增加会有所增加。前期尽量每天更新一题,之后题量随时间的增加会有所增加。中间也会插入一些算法的问题,文章内容也会不断打磨优化,争取做到好、然后更好!

一、概念说明

1.最大公约数
1.1公约数

公约数 ,亦称“公因数”。它是指能同时整除几个整数的数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;

1.2最大公约数

公约数中最大的称为最大公约数

1.3举例说明

两个数的最大公约数,如:2和4的最大公约数就是2
解释:
2的约数:1、2
4的约数:1、2、4
2和4的公约数:1、2
最大公约数:2

2.最小公倍数
2.1公倍数

公倍数 是指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。

2.2最小公倍数

公倍数中最小的,就称为这些整数的最小公倍数

2.3举例说明

两个数的最小公倍数,如:2和4的最小公倍数就是4
解释:
2的倍数:2、4、6、8、10、12…等
4的倍数:4、8、12…等
2和4公倍数:4、8、12等
最小公倍数:4

3.求解方法

此处仅写最大公约数的求解方法。因为最小公倍数和最大公约数之间有公可以转换计算,假如两个整数m和n最大公约数为a,最小公倍数就是m*n/a。

3.1 短除法

短除法:先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止 。

手写了一个小例子以助理解:
在这里插入图片描述

3.2 辗转相除法

辗转相除法, 又名欧几里德算法,是求最大公约数的一种方法。具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
举个例子来说
a=25 , b=15 , a/b=1…10, b/10=1…5, 10/5=2…0,最后一个余数为0而除数是5, 5就是所求最大公约数。

3.3 辗转相减法(更相减损术)

辗转相减法,其特点是做一系列减法,从而求得最大公约数。例如 :两个自然数35和14,用大数减去小数,(35,14)—>(21,14)—>(7,14),此时,7小于14,要做一次交换,把14作为被减数,即(14,7)—>(7,7),再做一次相减,结果为0,这样也就求出了最大公约数7 。

★注意:下面解题以辗转相除法为例。

二、问题呈现

Problem Description

输入两个正整数m和n,求其最大公约数和最小公倍数。

Input

两个正整数m、n

Output

m和n的最大公约数、最小公倍数

Sample Input

3 5

Sample Output

1

15

1为最大公约数

15为最小公倍数

三、源码实现(+注释)

#include<stdio.h>

int main(){
	int a,b,num1,num2,temp;
	printf("请输入两个整数:\n");
	scanf("%d%d",&num1,&num2);
	//如果num1<num2,交换num1和num2的值
	if(num1<num2)
	{
		temp = num1;
		num1 = num2;
		num2 = temp;
	}
	//另取两个变量a,b 分别赋值为num1,num2
	a = num1;
	b = num2;
	
	//辗转相除法,直到b为0为止
	while(b!=0){
	 	temp=a%b;
		a = b;
		b = temp;
	}
	printf("最大公约数:%d\n",a);
	printf("最小公倍数:%d\n",num1*num2/a);
	
	return 0;
}

四、输出结果展示

请输入两个整数:
3 5
最大公约数:1
最小公倍数:15

--------------------------------
Process exited after 3.225 seconds with return value 0
请按任意键继续. . .

五、流程分析

1.读题

输入两个正整数m和n,求其最大公约数和最小公倍数。 关键点:①两个正整数 ②最大公约数 ③最小公倍数

2.构思

a.根据关键点①两个正整数,我们可以得知需要先定义两个整数,输入时应为正整数,
b.关键点②和③,最大公约数和最小公倍数,简单来说,公约数中最大的称为最大公约数,公倍数中最小的,就称为这些整数的最小公倍数。(没看概念说明看这里,可能会有听君一席话,如听一席话的感觉,建议先看一下概念说明)
c.本题用辗转相除法(见注释)求解为例,用较小数除较大数,所以需要先对两个数比较,进行交换,让较小数在前,较大数在后。再用while循环和取余运算等进行后续步骤的实现即可。

辗转相除法:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

3.编程

把你所思所想,以代码的形式,写出来。

Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
如果对大家有帮助的话,希望大家能多多点赞+关注!这样我动力会更足哦! ღ( ´・ᴗ・` )比心
友情提示:第一篇为试看内容,关注博主就可以免费观看本专栏全部内容!(*^ ▽ ^ *)

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code_流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值