名人说:古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。——苏轼
进度:C/C++语言100题练习计划专栏,目前15/100
🐼本篇内容简介:一、概念说明-->二、问题呈现-->三、源码实现(+注释)-->四、输出结果展示-->五、流程分析
🥇C语言100题练习专栏计划:目的:巩固练习C语言,增强上机、动手实践能力,交流学习!题量随时间的增加会有所增加。前期尽量每天更新一题,之后题量随时间的增加会有所增加。中间也会插入一些算法的问题,文章内容也会不断打磨优化,争取做到好、然后更好!
C Programming Language
一、概念说明
1.最大公约数
1.1公约数
公约数 ,亦称“公因数”。它是指能同时整除几个整数的数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;
1.2最大公约数
公约数中最大的称为最大公约数
。
1.3举例说明
两个数的最大公约数,如:2和4的最大公约数就是2
解释:
2的约数:1、2
4的约数:1、2、4
2和4的公约数:1、2
最大公约数:2
2.最小公倍数
2.1公倍数
公倍数 是指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。
2.2最小公倍数
公倍数中最小的,就称为这些整数的最小公倍数
。
2.3举例说明
两个数的最小公倍数,如:2和4的最小公倍数就是4
解释:
2的倍数:2、4、6、8、10、12…等
4的倍数:4、8、12…等
2和4公倍数:4、8、12等
最小公倍数:4
3.求解方法
此处仅写最大公约数的求解方法。因为最小公倍数和最大公约数之间有公可以转换计算,假如两个整数m和n最大公约数为a,最小公倍数就是m*n/a。
3.1 短除法
短除法:先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止 。
手写了一个小例子
以助理解:
3.2 辗转相除法
辗转相除法, 又名欧几里德算法,是求最大公约数的一种方法。具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
举个例子来说
:
a=25 , b=15 , a/b=1…10, b/10=1…5, 10/5=2…0,最后一个余数为0而除数是5, 5就是所求最大公约数。
3.3 辗转相减法(更相减损术)
辗转相减法,其特点是做一系列减法,从而求得最大公约数。例如 :两个自然数35和14,用大数减去小数,(35,14)—>(21,14)—>(7,14),此时,7小于14,要做一次交换,把14作为被减数,即(14,7)—>(7,7),再做一次相减,结果为0,这样也就求出了最大公约数7 。
★注意:下面解题以辗转相除法为例。
二、问题呈现
Problem Description
输入两个正整数m和n,求其最大公约数和最小公倍数。
Input
两个正整数m、n
Output
m和n的最大公约数、最小公倍数
Sample Input
3 5
Sample Output
1
15
1为最大公约数
15为最小公倍数
三、源码实现(+注释)
#include<stdio.h>
int main(){
int a,b,num1,num2,temp;
printf("请输入两个整数:\n");
scanf("%d%d",&num1,&num2);
//如果num1<num2,交换num1和num2的值
if(num1<num2)
{
temp = num1;
num1 = num2;
num2 = temp;
}
//另取两个变量a,b 分别赋值为num1,num2
a = num1;
b = num2;
//辗转相除法,直到b为0为止
while(b!=0){
temp=a%b;
a = b;
b = temp;
}
printf("最大公约数:%d\n",a);
printf("最小公倍数:%d\n",num1*num2/a);
return 0;
}
四、输出结果展示
请输入两个整数:
3 5
最大公约数:1
最小公倍数:15
--------------------------------
Process exited after 3.225 seconds with return value 0
请按任意键继续. . .
五、流程分析
1.读题
输入两个正整数m和n,求其最大公约数和最小公倍数。 关键点:①两个正整数 ②最大公约数 ③最小公倍数
2.构思
a.
根据关键点①两个正整数,我们可以得知需要先定义两个整数,输入时应为正整数,
b.
关键点②和③,最大公约数和最小公倍数,简单来说,公约数中最大的称为最大公约数,公倍数中最小的,就称为这些整数的最小公倍数。(没看概念说明看这里,可能会有听君一席话,如听一席话的感觉,建议先看一下概念说明)
c.
本题用辗转相除法(见注释)求解为例,用较小数除较大数,所以需要先对两个数比较,进行交换,让较小数在前,较大数在后。再用while循环和取余运算等进行后续步骤的实现即可。
辗转相除法:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
3.编程
把你所思所想,以代码的形式,写出来。
Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
如果对大家有帮助的话,希望大家能多多点赞+关注!这样我动力会更足哦! ღ( ´・ᴗ・` )比心
友情提示:第一篇为试看内容,关注博主就可以免费观看本专栏全部内容!(*^ ▽ ^ *)