2021 ICPC Southeastern Europe Regional Contest Werewolves(树上背包)

2021 ICPC Southeastern Europe Regional Contest Werewolves(树上背包)

链接
题意:给出一个n个节点的树( n ≤ 3000 n\le3000 n3000),每个点有自己的颜色,好子树的定义是,子树内有一半以上的节点是同一种颜色,问有多少种划分子树的方法,最后对 998244353 998244353 998244353取模。
思路:dls讲的树上背包。。当时听了也没太明白代码怎么写,现在想想还是对树上背包这种不太熟。我们对于每个颜色,都要在树上进行一次dp,这样就可以,对于颜色 i i i,相同看作1,不同是-1,最后统计所有的和大于0的组合方法,所以我们定义数组 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以 i i i为根,总和为 j j j的方案数,正常开成2倍表示负数就行,但是懒得了,就开成 d p [ i ] [ j ] [ 0 / 1 ] dp[i][j][0/1] dp[i][j][0/1],0代表负数,1代表正数,最后单独开一个数组代表刚好为0。现在先看转移
①对于 u u u的每一个子树 v v v(用 s u m i sum_i sumi代表 i i i号点的和),如果 s u m u + s u m v ≤ c n t 这 个 颜 色 的 总 数 sum_u+sum_v\le cnt_{这个颜色的总数} sumu+sumvcnt那么首先有: d p [ u ] [ j + k ] [ 1 ] = d p [ u ] [ j + k ] [ 1 ] + o r i [ u ] [ j ] [ 1 ] ∗ d p [ v ] [ k ] [ 1 ] d p [ u ] [ j + k ] [ 0 ] = d p [ u ] [ j + k ] [ 0 ] + o r i [ u ] [ j ] [ 0 ] ∗ d p [ v ] [ k ] [ 0 ] \begin{array}{c} dp[u][j + k][1] = dp[u][j + k][1] + ori[u][j][1] * dp[v][k][1] \\ dp[u][j + k][0] = dp[u][j + k][0] + ori[u][j][0] * dp[v][k][0] \end{array} dp[u][j+k][1]=dp[u][j+k][1]+ori[u][j][1]dp[v][k][1]dp[u][j+k][0]=dp[u][j+k][0]+ori[u][j][0]dp[v][k][0],其中 o r i ori ori是这个状态在进行这次转移之前初始状态,正确性是因为,对于一个总和,那他肯定是 u u u的总和为 j j j的情况和 v v v的总和为 k k k的情况组合起来。
②对于一个子树 v v v,如果 s u m u ≥ s u m v sum_u \ge sum_v sumusumv那么就是,对于一个情况,可以有 s u m u − s u m v sum_u-sum_v sumusumv,转移方程就为 d p [ u ] [ j − k ] [ 0 ] = d p [ u ] [ j − k ] [ 0 ] + o r i [ u ] [ j ] [ 0 ] ∗ d p [ v ] [ k ] [ 1 ] d p [ u ] [ j − k ] [ 1 ] = d p [ u ] [ j − k ] [ 1 ] + o r i [ u ] [ j ] [ 1 ] ∗ d p [ v ] [ k ] [ 0 ] \begin{array}{c} dp[u][j-k][0] = dp[u][j-k][0] + ori[u][j][0]*dp[v][k][1] \\ dp[u][j-k][1] = dp[u][j-k][1] + ori[u][j][1]*dp[v][k][0] \end{array} dp[u][jk][0]=dp[u][jk][0]+ori[u][j][0]dp[v][k][1]dp[u][jk][1]=dp[u][jk][1]+ori[u][j][1]dp[v][k][0]
③ 跟②情况刚好相反
④ 两个相减刚好为0,就有转移方程 d p 0 [ u ] = d [ u ] + o r i [ u ] [ j ] [ 0 ] ∗ d p [ v ] [ k ] [ 1 ] + o r i [ u ] [ j ] [ 1 ] ∗ d p [ v ] [ k ] [ 0 ] dp0[u] = d[u] + ori[u][j][0] * dp[v][k][1] + ori[u][j][1] * dp[v][k][0] dp0[u]=d[u]+ori[u][j][0]dp[v][k][1]+ori[u][j][1]dp[v][k][0]
⑤对于 u u u来说,每次转移最开始,所有的次数都可以从 u u u的和为0的状态转移 d p [ u ] [ j ] [ 0 ] = d p [ u ] [ j ] [ 0 ] + o r i 0 [ u ] ∗ d p [ v ] [ j ] [ 0 ] d p [ u ] [ j ] [ 1 ] = d p [ u ] [ j ] [ 1 ] + o r i 0 [ u ] ∗ d p [ v ] [ j ] [ 1 ] d p 0 [ u ] = d p 0 [ u ] + o r i 0 [ u ] ∗ d p 0 [ v ] \begin{array}{c} dp[u][j][0] = dp[u][j][0] + ori0[u] * dp[v][j][0]\\ dp[u][j][1] = dp[u][j][1] + ori0[u] * dp[v][j][1]\\ dp0[u] = dp0[u] + ori0[u] * dp0[v]\end{array} dp[u][j][0]=dp[u][j][0]+ori0[u]dp[v][j][0]dp[u][j][1]=dp[u][j][1]+ori0[u]dp[v][j][1]dp0[u]=dp0[u]+ori0[u]dp0[v]
所有的情况就讨论完了,但是这样写上去很明显是一个 n 3 n^3 n3的算法,所以加上优化,对于每个颜色,记录他的 c n t cnt cnt,如果对于dfs内部的循环,如果他们枚举的和,最大就是m,并且不会超过他节点的总数size,所以每个循环应该小于 m i n ( m , s i z e ) min(m, size) min(m,size)

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int MOD = 998244353;
const int N = 3e3+10;
int dp[N][N][2], tmp[N][N][2], d[N], tp[N], ans, val[N], c[N], vis[N], n, m;
int head[N], idx;
struct Edge{int to, nxt;}e[N << 1];
void add(int u, int v) {e[++idx].to = v, e[idx].nxt = head[u], head[u] = idx;}

int dfs(int u, int fa)
{
    int p = 1;
    if (val[u]) dp[u][1][1] = 1;
    else dp[u][1][0] = 1;
    for (int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if (v == fa) continue;
        int siz = dfs(v, u);
        tp[u] = d[u];
        for (int j = 1; j <= min(p, m); j++) {
            tmp[u][j][0] = dp[u][j][0];
            tmp[u][j][1] = dp[u][j][1];
        }

        d[u] = (d[u] + d[v] * tp[u]) % MOD;
        for (int j = 1; j <= min(siz, m); j++) {
            dp[u][j][0] = (dp[u][j][0] + tp[u] * dp[v][j][0]) % MOD;
            dp[u][j][1] = (dp[u][j][1] + tp[u] * dp[v][j][1]) % MOD;
        }

        for (int j = 1; j <= min(p, m); j++) {
            dp[u][j][1] = (dp[u][j][1] + tmp[u][j][1] * d[v]) % MOD;
            dp[u][j][0] = (dp[u][j][0] + tmp[u][j][0] * d[v]) % MOD;
            for (int k = 1; k <= min(m, siz); k++) {
                if (k + j <= m) {
                    dp[u][k + j][1] = (dp[u][k + j][1] + tmp[u][j][1] * dp[v][k][1]) % MOD;
                    dp[u][k + j][0] = (dp[u][k + j][0] + tmp[u][j][0] * dp[v][k][0]) % MOD;

                }
                if (j - k >= 1) {
                    dp[u][j - k][1] = (dp[u][j - k][1] + tmp[u][j][1] * dp[v][k][0]) % MOD;
                    dp[u][j - k][0] = (dp[u][j - k][0] + tmp[u][j][0] * dp[v][k][1]) % MOD;
                }
                if (k - j >= 1) {
                    dp[u][k - j][1] = (dp[u][k - j][1] + tmp[u][j][0] * dp[v][k][1]) % MOD;
                    dp[u][k - j][0] = (dp[u][k - j][0] + tmp[u][j][1] * dp[v][k][0]) % MOD;
                }
                if (j == k) {
                    d[u] = (d[u] + tmp[u][j][0] * dp[v][k][1] + tmp[u][j][1] * dp[v][k][0]) % MOD;
                }
            }
        }
        p += siz;
    }
    for (int i = 1; i <= min(p, m); i++) {
        ans = (ans + dp[u][i][1]) % MOD;
    }
    return p;
}

signed main()
{
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> c[i];
    }
    for (int i = 1; i < n; i++) {
        int u, v;
        cin >> u >> v;
        add(u, v); add(v, u);
    }
    for (int i = 1; i <= n; i++) {
        if (vis[c[i]]) continue;
        m = 0; vis[c[i]] = 1;
        for (int j = 1; j <= n; j++) {
            if (c[i] == c[j]) {
                m++; val[j] = 1;
            }else val[j] = 0;
        }
        for (int j = 1; j <= n; j++) {
            d[j] = 0;
            for (int k = 1; k <= m; k++) {
                dp[j][k][0] = dp[j][k][1] = 0;
            }
        }
        dfs(1, 0);
    }
    cout << ans;
    return 0;
}

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值