personal acm 模板

targan+缩点

class targan {
private:
    int n, m, cnt, cntb;//点数,边数,时间戳,强连通分量数
    vector<vector<int>> edg, nedg, belong;//旧的存边二维矩阵,新的存边矩阵,存强联通分量的子节点,
	//eg:belong[i][j]表示第i个联通分量的第j个节点,i的范围是【1-cntb】
    vector<int> dfn, low, mmp;//tj中间值,mmp是离散化值,mmp【idx】表示idx所在的联通分量的序号
    vector<bool> instack;
    stack<int> s;
    vector<vector<int>> fa;//新图的父亲节点。即逆向图的纯边矩阵。

public:
    targan(int n) : cnt(0), cntb(0) {
        this->n = n;
        init();
    }

    void init() {
        edg.resize(n + 1);
        belong.resize(n + 1);
        dfn.resize(n + 1);
        low.resize(n + 1);
        instack.resize(n + 1);
    }

    void addedg(int m) {
        this->m = m;
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            if (a[u] > a[v]) swap(u, v);
            edg[u].push_back(v);
            if (a[u] * 2 >= a[v])
                edg[v].push_back(u);
        }
    }

    void gan() {
        for (int i = 1; i <= n; i++)
            if (!dfn[i]) Tarjan(i);
    }

    void suodian() {
        nedg.resize(cntb + 2);
        mmp.resize(n + 2);

        for (int i = 1; i <= cntb; i++) {
            for (int j = 0; j < belong[i].size(); ++j) {
                mmp[belong[i][j]] = i;
            }
        }

        for (int i = 1; i <= n; i++) {
            for (auto j : edg[i]) {
                if (mmp[i] != mmp[j]) nedg[mmp[i]].push_back(mmp[j]);
            }
        }
    }

    int dfs() {
        fa.resize(cntb + 2);
        int ans = 0;
        if1(cntb) {
            for (auto j : nedg[i]) {
                fa[j].push_back(i);
                if (fa[j].size() > 1) return 0;
            }
            if (fa[i].empty()) ans = i;
        }
        return belong[ans].size();
    }

    void outtj() {
        for (int i = 1; i <= cntb; ++i) {
				cout<<"强连通分量第 "<<i<<" 个: ";//
            for (int j = 0; j < belong[i].size(); ++j) {
                cout << belong[i][j] << " ";
            }
            cout << endl;
        }
    }

    void Tarjan(int u) {
        ++cnt;
        dfn[u] = low[u] = cnt;
        s.push(u);
        instack[u] = true;

        for (int i = 0; i < edg[u].size(); ++i) {
            int v = edg[u][i];
            if (!dfn[v]) {
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            } else if (instack[v]) {
                low[u] = min(low[u], dfn[v]);
            }
        }

        if (dfn[u] == low[u]) {
            ++cntb;
            int node;
            do {
                node = s.top();
                s.pop();
                instack[node] = false;
                belong[cntb].push_back(node);
            } while (node != u);
        }
    }
};

void solve() {
    int n;
    cin >> n;
    if1(n) cin >> a[i];
    targan tj(n);
    tj.addedg(n - 1);
    tj.gan();
    tj.suodian();
    int t = tj.dfs();
    if (!t) cout << 0 << endl;
    else cout << t << endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夭辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值