- 博客(6)
- 收藏
- 关注
原创 手把手教你使用新版pychorm远程连接ssh
这篇教程详细介绍了如何在PyCharm专业版中配置SSH远程连接,适用于2023-2025版本。主要内容包括:1)创建项目并配置SSH连接(主机、端口、账号等);2)在SSH服务器端创建conda虚拟环境;3)配置Python解释器并设置本地与远程路径映射;4)在PyCharm中查看SSH服务器文件信息;5)通过PyCharm终端直接操作SSH服务器;6)文件同步方法(自动/手动)。教程还提供了常见问题的解决方案,如连接失败时取消代理设置、conda路径查找等。
2025-09-03 20:00:14
720
原创 【保姆级入门】手推SimCSE损失函数+论文粗读
本文介绍了SimCSE模型中的损失函数及其原理。首先解释了句子嵌入的各向异性问题,详细推导了对比学习流程和损失函数,使用同一句子两次dropout结果作为正样本,其他句子结果作为负样本,通过softmax和交叉熵损失函数最大化正样本相似度。同时引入温度参数T调节样本关注度。文章还区分了无监督和有监督SimCSE的差异,有监督方法利用NLI数据集人工标注的entailment和contradiction构建样本对。
2025-08-22 18:29:34
988
原创 Zero-shot和Unsupervised有什么区别?
第三种操作:针对任务A,人工标注或者不使用标注数据训练模型都可以,然后做一个凭空出现的任务C。zero-shot就像我们平时老师用中文教课,我们训练做题做的也是中文试卷,最后的考试却让我们做一张英文试卷。Zero-shot是零样本,Unsupervised无需标注数据,看起来都是不需要数据的意思,它们有区别吗?第二种操作:针对任务A,但不使用任何标注数据训练模型,然后做任务A。第一种操作:用针对任务A的人工标注的数据训练模型,然后做任务A。训练阶段可能用过其他任务的标注数据(比如大模型预训练用。
2025-08-13 17:24:14
270
原创 【论文精读】A comprehensive survey of sentence representations:From the bert epoch to the chatgpt era and
这篇综述论文系统梳理了NLP领域句子表征方法的发展脉络,从BERT到ChatGPT时代的研究进展。文章将方法分为有监督和无监督学习两大类:有监督方法主要基于NLI任务(如SNLI数据集)训练模型,包括Siamese-BERT、T5等架构的改进;无监督方法聚焦对比学习,通过数据增强(如单词修改、dropout)、损失函数优化(补充损失、对比损失改进)和负采样策略提升性能。论文特别探讨了生成式模型在创造合成训练数据方面的潜力,以及后处理技术对表征质量的提升作用,为理解句子表征技术演进提供了全景视角。
2025-08-13 17:11:02
1089
原创 运行时错误‘53’:文件未找到:MathPage.WLL;please restart word to load mathtype addin properly
打开WPS无法粘贴,一直报下面两种错误:运行时错误‘53’:文件未找到:MathPage.WLL当前情况是我的word中没有显示MathType,WPS中显示MathType但实际无法使用,粘贴功能都失效了找了很多教程都是针对word的修改,最终主包的结果是在,不方便的地方是之后用到MathType只能word编辑,好处是主包的WPS终于能正常使用了。
2025-07-30 17:34:48
520
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人