适合新手小白的ML入门学习路线

这篇文章非常适合新手小白的入门请求!我们从“是什么、为什么、怎么发展”的角度,用一条清晰的时间线来梳理机器学习算法的发展历程。

我会用一条“从简单到复杂,从理论到实践”的脉络,为你勾勒出这幅宏大的技术画卷。

核心思想先行:机器学习是什么?

简单说,机器学习是让计算机从数据中学习规律,并利用这些规律对未知数据进行预测或决策的一门学科。 它不像传统编程那样需要人为制定所有规则,而是通过“喂”给算法大量数据,让算法自己找到规则。


机器学习算法发展时间线

下图清晰地展示了机器学习主流算法的发展脉络与时代背景:
mermaid代码:

timeline
    title 机器学习算法发展时间线
    section 奠基时代 (1950s-1970s)
        1950s : 感知机模型问世<br>奠定神经网络基础
        1960s : 决策树早期概念出现
        1970s : 反向传播算法雏形<br>但理论未被重视
    section 百花齐放时代 (1980s-1990s)
        1980s : 决策树算法诞生 (ID3)<br>反向传播算法被重新发明
        1980s : 集成学习思想萌芽
        1990s : 支持向量机 (SVM)<br>在众多领域表现卓越
        1990s : 随机森林、AdaBoost<br>等集成算法被提出
    section 核方法与集成时代 (2000s初)
        早期 : 核方法被广泛应用<br>SVM与核方法结合达顶峰
        同期 : 集成学习方法成熟<br>成为强大且实用的工具
    section 深度学习大爆炸时代 (2006-至今)
        2006 : 深度学习元年<br>Hinton突破深度网络训练难题
        2012 : AlexNet在ImageNet<br>大赛中碾压传统方法
        至今 : CNN、RNN、Transformer<br>等架构推动AI浪潮
    section 大模型与普及时代 (2018-至今)
        2018 : GPT、BERT等<br>预训练大模型诞生
        至今 : 生成式AI (AIGC) 爆发<br>AI成为基础设施

在这里插入图片描述


各发展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码骑士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值