这篇文章非常适合新手小白的入门请求!我们从“是什么、为什么、怎么发展”的角度,用一条清晰的时间线来梳理机器学习算法的发展历程。
我会用一条“从简单到复杂,从理论到实践”的脉络,为你勾勒出这幅宏大的技术画卷。
核心思想先行:机器学习是什么?
简单说,机器学习是让计算机从数据中学习规律,并利用这些规律对未知数据进行预测或决策的一门学科。 它不像传统编程那样需要人为制定所有规则,而是通过“喂”给算法大量数据,让算法自己找到规则。
机器学习算法发展时间线
下图清晰地展示了机器学习主流算法的发展脉络与时代背景:
mermaid代码:
timeline
title 机器学习算法发展时间线
section 奠基时代 (1950s-1970s)
1950s : 感知机模型问世<br>奠定神经网络基础
1960s : 决策树早期概念出现
1970s : 反向传播算法雏形<br>但理论未被重视
section 百花齐放时代 (1980s-1990s)
1980s : 决策树算法诞生 (ID3)<br>反向传播算法被重新发明
1980s : 集成学习思想萌芽
1990s : 支持向量机 (SVM)<br>在众多领域表现卓越
1990s : 随机森林、AdaBoost<br>等集成算法被提出
section 核方法与集成时代 (2000s初)
早期 : 核方法被广泛应用<br>SVM与核方法结合达顶峰
同期 : 集成学习方法成熟<br>成为强大且实用的工具
section 深度学习大爆炸时代 (2006-至今)
2006 : 深度学习元年<br>Hinton突破深度网络训练难题
2012 : AlexNet在ImageNet<br>大赛中碾压传统方法
至今 : CNN、RNN、Transformer<br>等架构推动AI浪潮
section 大模型与普及时代 (2018-至今)
2018 : GPT、BERT等<br>预训练大模型诞生
至今 : 生成式AI (AIGC) 爆发<br>AI成为基础设施


最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



