设将n(n>1)个整数存放到一维数组R中。试设计一个在时间和空间上都尽可能高效的算法,将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据由(X0, X1, ..., Xn-1)变换为(Xp, Xp+1, ..., Xn-1, X0, X1, ..., Xp-1)。要求:
(1)给出算法的设计思想。
(2)用C语言或C++语言描述算法,关键之处给出注释。
(3)说明算法的时间复杂度。
一,算法设计思想
先将前p个元素逆置。
再将后面n - p个元素逆置。
最后将整个数组逆置。
通过这三步操作,就可以实现将数组循环左移p个位置。
二,代码实现
#include <stdio.h>
// 逆置数组中从 start 到 end 的元素
void reverse(int arr[], int start, int end) {
while (start < end) {
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
// 循环左移数组 p 个位置
void circularLeftShift(int arr[], int n, int p) {
// 逆置前 p 个元素
reverse(arr, 0, p - 1);
// 逆置后面 n - p 个元素
reverse(arr, p, n - 1);
// 逆置整个数组
reverse(arr, 0, n - 1);
}
int main() {
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8};
int n = sizeof(arr) / sizeof(arr[0]);
int p = 3;
circularLeftShift(arr, n, p);
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
return 0;
}
三,时间复杂度分析
1. 逆置前p个元素、逆置后面n - p个元素以及逆置整个数组,这三个操作的时间复杂度都是O(p)、O(n - p)和O(n),分别执行一次,总体时间复杂度为O(n),因为在大O表示法中,忽略常数系数,最终时间复杂度取决于数组的长度n。
2. 空间复杂度为O(1),因为只使用了有限的几个额外变量,不随输入规模的增加而增加额外的空间。