设将n(n>1)个整数存放到一维数组R中。试设计一个在时间和空间上都尽可能高效的算法,将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据由(X0, X1, ..., Xn-1)变换为(Xp

设将nn>1)个整数存放到一维数组R中。试设计一个在时间和空间上都尽可能高效的算法,将R中保存的序列循环左移p0<p<n)个位置,即将R中的数据由(X0, X1, ..., Xn-1)变换为(Xp, Xp+1, ..., Xn-1, X0, X1, ..., Xp-1)。要求:

1)给出算法的设计思想。

2)用C语言或C++语言描述算法,关键之处给出注释。

3)说明算法的时间复杂度。

一,算法设计思想

先将前p个元素逆置。
再将后面n - p个元素逆置。
最后将整个数组逆置。
通过这三步操作,就可以实现将数组循环左移p个位置。

二,代码实现

#include <stdio.h>

// 逆置数组中从 start 到 end 的元素
void reverse(int arr[], int start, int end) {
    while (start < end) {
        int temp = arr[start];
        arr[start] = arr[end];
        arr[end] = temp;
        start++;
        end--;
    }
}

// 循环左移数组 p 个位置
void circularLeftShift(int arr[], int n, int p) {
    // 逆置前 p 个元素
    reverse(arr, 0, p - 1);
    // 逆置后面 n - p 个元素
    reverse(arr, p, n - 1);
    // 逆置整个数组
    reverse(arr, 0, n - 1);
}

int main() {
    int arr[] = {1, 2, 3, 4, 5, 6, 7, 8};
    int n = sizeof(arr) / sizeof(arr[0]);
    int p = 3;
    circularLeftShift(arr, n, p);
    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }
    return 0;
}

三,时间复杂度分析

1. 逆置前p个元素、逆置后面n - p个元素以及逆置整个数组,这三个操作的时间复杂度都是O(p)、O(n - p)和O(n),分别执行一次,总体时间复杂度为O(n),因为在大O表示法中,忽略常数系数,最终时间复杂度取决于数组的长度n。

2. 空间复杂度为O(1),因为只使用了有限的几个额外变量,不随输入规模的增加而增加额外的空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嗯嗯,是楠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值