- 博客(5)
- 收藏
- 关注
原创 SkateFormer: Skeletal-Temporal Transformerfor Human Action Recognition
基于骨架的动作识别通过关节坐标及其在骨架数据中的连接关系对人类动作进行分类,已广泛应用于多种场景。尽管图卷积网络(GCN)已被提出用于处理以图结构表示的骨架数据,但其感受野受限于关节连接关系,范围有限。为解决这一局限性,近期研究引入了基于Transformer的方法,但捕获所有帧中所有关节之间的相关性需要大量内存资源。为此,我们提出了一种名为骨骼-时间Transformer(SkateFormer)的新方法,该方法。
2025-06-03 10:00:00
1058
原创 Spatiotemporal Clues Disentanglement Network for Self-Supervised Skeleton-Based Action Recognition
对比学习在基于骨骼的动作识别中取得了显著成功。然而,现有大多数方法将骨骼序列编码为纠缠的时空表示,并将对比局限于同一层次的表征空间。为此,本文提出了一种新的对比学习框架——时空线索解缠网络具体而言,我们将解耦模块与特征提取器结合,分别从空间和时间域中提取显式线索。在SCD-Net的训练过程中,通过构造全局锚点,我们促进锚点与提取线索之间的交互。此外,我们提出了一种具有结构约束的新型掩码策略以强化上下文关联,将掩码图像建模的最新进展融入所提出的SCD-Net中。
2025-04-15 10:36:28
898
原创 Neural Koopman Pooling: Control-Inspired Temporal Dynamics Encoding forSkeleton-Based Action Recogn
基于神经网络的人体动作识别在各个领域变得越来越重要。现有的工作大多训练基于CNN或GCN的骨干来提取时空特征,并使用时序平均/最大池化进行信息聚合。然而,这些池化方法无法捕获高阶动态信息。为了解决这个问题,我们提出了一个称为Koopman池化的即插即用模块,它是一种基于Koopman理论的参数化高阶池技术。Koopman算子能够线性化非线性动力系统,提供了一种通过动态矩阵来表示复杂系统的方法,该动态矩阵可用于分类。我们还提出了特征值归一化方法以确保学习到的动态具有非衰减稳定性特性。
2025-03-25 08:00:00
885
原创 Hierarchically Decomposed Graph Convolutional Networks forSkeleton-Based Action Recognition(HD-GCN)
人类动作识别(HAR)是一项通过接收视频数据作为输入对动作类别进行分类的任务。HAR 被广泛应用于人机交互和虚拟现实等领域。最近,随着深度学习技术的发展,人们提出了几种基于 RGB 和骨架的 HAR 方法。然而,基于 RGB 的方法 [31, 29]无法稳健地识别人类动作,因为它们受到环境噪音(如背景颜色、光线亮度和衣服)的强烈影响。因此,使用骨架模式的方法[35, 24, 36, 26, 5, 4, 18, 2, 15]受到了关注,因为它们不受这些噪音的影响。
2025-03-13 15:03:52
954
原创 Revisiting Skeleton-based Action Recognition
人体骨架作为人体动作的紧凑表示,近年来受到越来越多的关注。许多基于骨骼的动作识别方法都采用 GCN 来提取人体骨骼的特征。尽管这些尝试取得了积极的成果,但基于 GCN 的方法在鲁棒性、互操作性和可扩展性方面仍有局限。在这项工作中,我们提出了基于骨骼的动作识别新方法 PoseConv3D。PoseConv3D 依靠三维热图体积而不是图形序列作为人体骨骼的基础表示。与基于 GCN 的方法相比,PoseConv3D 在学习时空特征方面更有效,对姿势估计噪声的鲁棒性更高,在跨数据集设置。
2025-03-10 11:54:13
482
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人