问题:
龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数 N 和 M (2≤N≤10^5, 1≤M≤10^5),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例:
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例:
2
4
4
6
思路:
因为每次增加一个外卖点时,我们总路径是要从根节点开始往路径短的一段开始向下走,再返回
某一点(可能是根节点或者是树上的另外一点),再继续向下走。
所以我们每次从新增点向上访问,直到遇到根节点或者被访问过的点为止。而一个点访问完要
返回,所以每次回溯总距离都加2,但我们送的最后一个点一定是最远点,通过题目我们知道,最
后一个点我们是不用返回根节点的,所以最后要减去最远点的距离(即返回根节点的距离)。
参考代码:
#include <bits/stdc++.h>
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define LL long long
#define PII pair<int,int>
#define PIII pair<int,PII>
#define PSI pair<string,int>
#define PIIS pair<int,pair<int,string> >
#define PDD pair<double,double>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=1e5+5;
const int M=1e7;
const int mod=1e9+7;
/*
*/
int pre[N]; //每个节点的前驱
int depth[N]; //每个节点的深度
vector<int> son[N]; //每个节点的儿子
bool vis[N]; //当前点是否访问过了
void dfs(int u)
{
for(auto val:son[u])
{
depth[val]=depth[u]+1;
dfs(val);
}
}
int main()
{
// io;
int n,m,x,root;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>x;
if(x==-1)root=i; //根节点
else son[x].push_back(i); //儿子节点
pre[i]=x; //父节点
}
depth[root]=0; //起点距离默认为0
//记录每一层的距离
dfs(root);
int maxn=0; //当前最大深度
int dis=0; //总距离
while(m--)
{
cin>>x;
//每次更新最大深度
maxn=max(maxn,depth[x]);
//走到根节点为止 或者是 当前点已经走过
while(x!=root && !vis[x])
{
vis[x]=1;
dis+=2; //每次加上来回的距离,即2倍路程
x=pre[x]; //向上走
}
cout<<dis-maxn<<"\n";
}
system("pause");
return 0;
}
/*
*/